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Abstract 

The theory of Massera and Schäffer relating the existence 

of unique almost periodic solutions of an inhomogeneous linear 

equation to  an exponential dichotomy for the homogeneous 

equation has been completely extended to discretizations by 

a strongly stable difference scheme.  In addition it has been 

shown that the almost periodic sequence solution will converge 

to the differential equation solution at a rate 0(kp) where p 

is the accuracy of the scheme, uniformly in t, if the coeffi- 

cients are sufficiently smooth. 

The preceding theory has also been applied to a class 

of exponentially stable partial differential equations to 

which one can apply the Hille-Yoshida Theorem.  It is possible 

to prove the existence of unique almost periodic solutions of 

the inhomogeneous equation which can be approximated by 

almost periodic sequences which are the solutions to appropri- 

ate discretizations.  Two methods of discretizations are 

discussed; the strongly stable scheme described above and 

the Lax-Wendroff scheme . 
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Introduction 

This work extends certain facets of the theory of 

Massera and Schäffer [1] (in the future referred to as M&S) 

relating properties of the solution of an inhomogeneous 

ordinary differential equation (ODF) to properties of the 

solutions of the homogeneous system.  In Part I we extend 

this theory to difference approximations of the ODE. In 

Part II we use the ODE theory, exclusively in the stable 

case, together with the Hille-Yoshida Theorem to obtain 

results for partial differential equations. 

The study of admissibility theory and dichotomy theory 

for difference equations was first done by Coffman and 

Schäffer [2].  This work differs from their work in that we 

are concerned with the preservation of admissibility and 

dichotomy properties by a difference equation which is used 

to approximate an ODE system which has certain of these 

properties. 

First let us review the theory of M&S.  Consider the 

equations 

(0.1) 

(0.2) 

y = A(t)y 

y = A(t)y + f (t) 

Here,   the  independent variable     t    ranges  over  the whole  real 

line  and  for each     t    the  vector    y(t)     lies  in  a Banach 

space    E     (which may be  infinite dimensional).     A(t),   for 

each   fixed t,     belongs   to the  space  of bounded operators  on E 
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which we will denote by L(E,E). Let B and D be two 

Bancich spaces of a function from the real line Into E. 

We  say  the pair     (3,0)     is  admissible  for   (0.2)   if 

a)    Vf e B    3a unique solution    y   (to   (0.-2) )   e  D,   and 
(0.3) 

b) lyl      < Klflg   . 

This definition is more restrictive than that of MSS.  We are 

not going to deal with all the subtleties of their theory, 

but just with certain important parts.  It is pointed out, 

however, that (0.3b) is actually superfluous (see M&S, 

Chapter 5)  but we include it in the definition of admissi- 

bility for simplicity. 

Observe that (0.3b) states that if we write the y 

given in (0.3a) as 

(0.4) y = C(f) 

then C, which is obviously a linear operator from B into D, 

is also bounded.  We will be concerned almost exclusively 

with the case that D = B = A(E)  where A is the space of 

almost periodic (AP) functions with range in E.  The range 

in this notation will generally be omitted and we will simply 

write A, etc., if no confusion might arise.  At times we 

will also be concerned with the cases B = D = L  or 
00 

B = D = C^ which we define as the space of bounded continu- 

ous functions with range in E.  Observe that  A  and C 
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are closed subspaces of L^ and we have the inclusions 

(0.5) A c c  C L 
00 00 

A(t)   will always be  an AP  or L^  operator  function 

unless  stated otherwise. 

Associated with  the  concept  of admissibility    we  define 

the  concept of  an exponential dichotomy  for   (0.1).     Specifi- 

cally   (0.1)   has  an exponential  dichotomy if there  exist 

projections     P,,   P2=  I  -  P,     such  that  if Y(t)   is   the 

fundamental  operator solution to   (0.1)      {Y(0)   =  I,     see  M&S, 

Chapter  3),   the  following estimates hold  for some  a  >   0. 

a) llY(t)P1Y"1(s)ll    <  Ke"a(t"s)    , t<s 

(0.6) 

b) llY(t)P2Y~1(s)ll   <  Ke"^3"^    , s   >   t   . 

Note that this is not the general definition of an 

exponential dichotomy given in M&S (Chapter 8)  but it is 

equivalent to their definition when E  is finite dimensional. 

In the case that E  is infinite dimensional we will in 

general only be concerned with the stable case; that is, 

?! =1,  P2 = 0. 

Observe that P,  is merely the projection on  E  , the 

space of initial data of solutions to (0.1) which are bounded 

for  t G [0,<»).  To see this note that if yn were in the 

range of P9  and if the corresponding solution y(s)  were 

bounded for s 2l 0  then, by setting t = 0 in (0.6b), we 

obtain 

-3- 
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(0.7) YQ = Y"1(3)y(s) = P2Y"
1(s)y(s) 

and y0 = 0  follows from letting s ■* «>.  Similarly  P- is 

just the projection on E_ , the space of initial data which 

are bounded for t S (-oo,0].  An exponential dichotomy merely 

states that E = E+ © E_  and that the solutions, in addition 

to being bounded, decay exponentially. 

Now it is a fundamental result of M&S that if A(t) e A 

then {A,A)     is admissible for (0.2) iff (0.1) has an expon- 

ential dichotomy.  The preceding statement is also true if 

A is replaced everywhere by L^.  We prove here the easy part 

of the result; namely if we have an exponential dichotomy, 

then we have admissibility.  If  f e L_  define 

(0.8) 

where 

y(t) = C(f) =  I G(t,s) f(s) ds 
— 00 

(0.9) 
G(t,s) =  Y(t)P1Y"

1(s) , 

= -Y(t)P2Y"
1(s) , 

t > s 

s > t 

Observe that the estimate 

(0.10) llG(t,s)ll - Ke -a|t-s| 

holds by the definition of an exponential dichotomy. 

Using (0.10) we see that the integral in (0.8) exists, 

that  y  satisfies (0.2), and that y  is the unique  L 

solution to (0.2) and in fact 

-4- 
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(0.11) llyll       <  —  llfll    . 
-i     oo   —       c( oo 

So that C, defined in (0.8), is a bounded operator from 

li (E) -> L (E) . To see that  C: A -> A we merely let T 
OO 00 J 

be  a common   e-almost period  for  f and A.   Then w(t)   = y(t+T) 

- y(t)     is  the  unique    L^     solution  to   (0.2)     with 

inhomogeneous  term 

(0.12)       [A(t+T)-A(t) ]y(t+T)   +   f(t+T)   -   f(t)   =  0(e) 

We  then use   (0.11)   to obtain 

(0.13) II (y(t+T)   - y(t))lloo = 0(e)   . 

The proof of the converse is more difficult and can be 

found in M&S, Chapter 10. A simplified proof valid only in 

the finite dimensional case is given in the Appendix. 

In Section 1 we will define almost periodic sequences, 

which will be the type of solution we will be searching for. 

Section 2 is the most important of this work.  Here, after 

discussing the properties of the strongly stable difference 

schemes we will be using, we will introduce a transformation 

which will separate out the roots of the scheme inside the 

unit circle and permit us to work with the Euler 1-step scheme. 

This technique was originally developed by Engquist [3] 

although the author was not aware of his work when the 

formulation given in Section 2 was developed.  Engquist's 

results will be discussed more thoroughly  at the end of 

Section 3. 

-5- 
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In Section 3 we settle the question of admissibility 

when the homogeneous system is exponentially stable.  Using 

an inequality which is an exact discrete analogue to the 

Gronwall inequality, we will show that the homogeneous 

difference equation is also exponentially stable.  From 

there it will be a simple matter to obtain, for any suffi- 

ciently small time step k,  the existence of an almost 

periodic sequence as a solution to the inhomogeneous 

difference equation.  Furthermore the sequences converge 

uniformly to the unique AP solution to the ODE with a 

uniform error 0(kP)  where  p is the order of accuracy of 

the scheme.  We will also show that this solution can in 

fact be calculated, i.e.  it is stable under  roundoff 

errors and errors in initial data. 

In Sections 4 and 5 we deal with the case that the 

homogeneous system has a general exponential dichotomy. 

We will show that the corresponding inhomogeneous difference 

equation also has an exponential dichotomy.  This is only 

of theoretical interest as the solution will no longer be 

stable under roundoff errors or errors in initial data. 

In Section 6 we will deal with some miscellaneous topics, 

especially the convergence of the mean value of the AP 

sequence to the mean value of the AP solution, and also the 

weakly nonlinear case. 

In Part II we extend this theory to a simple class of 

partial differential equations which can be written as an 

evolution equation 

-6- 
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(0.14) y = [B-Ö]y + f 

where B  is an unbounded operator which satisfies the 

conditions of the Hille-Yoshida Theorem and  6(t)  is an 

AP function such that the homogeneous system is exponentially 

stable.  We can obtain a unique AP solution to (0.14) by 

using the formula which would be valid if B were bounded 

and then showing that under mild restrictions on  f  the 

resultant function does in fact satisfy (0.14). 

In Section 8 we introduce a family of bounded operators 

B,  which are spatial discretizations to B.  We construct 

functions  y,  which are the unique AP solutions to 

(0.15) YK = [BK-^YU + f 

We will give conditions to insure that 

(0.16) My-y^ll^ 0(hD) , 

where  j is the order of the approximation of B, to B, 

In Section 9 we apply the theory of Part I to (0.15) to 

obtain an AP sequence yn.u  which approximates y.. 

We have however the unfortunate restriction 

(0.17) 2m =  0(1) 

nu where     llB.II   = 0(l/h  ).     A more  favorable  result 

(0.18) m =  0(1) 

is  obtained  in Section  10    when using the Lax-Wendroff scheme. 

-7- 
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In Section 11 we will consider the extension of these 

results in the case that the operator B  is perturbed by 

some bounded AP perturbation D(t). 

Finally in the Appendix we will give a proof of the 

basic ODE theorem that admissibility is equivalent to the 

existence of an exponential dichotomy.  The proof is valid 

only in the finite dimensional case but is simpler than the 

proof given in M&S and is also simpler than a finite 

dimensional proof to be found in Goppel [4]. 
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1.  Almost Periodic Sequences 

Our first task is to introduce the discrete analogue 

of an AP function.  Following Corduneanu [5] we define an 

almost periodic (AP) sequence  a  with ranqe in E as n 3 

follows: 

an  is  AP     iff given     e   >  0  there exists  a  length L(e) 

(a positive  integer)   such  that in  any  sequence  of L 

consecutive  integers   there  exists   an N  such  that 

(1.1) la ^     -  a  II      <   G n+N n <*> 

where the sup in (1.1) is taken over n.  As shown in 

Corduneanu (page 45) this is equivalent to normality i.e. 

given any sequence of integers  N.  the sequence 

bn*i = an+N w:'--1-1 have a uniformly convergent subsequence. 
i 

Although the proof given in Corduneanu is stated for scalar 

valued sequences this proof is obviously valid if the range 

is any Banach space E. 

n 
If we define the space L^CE)  as the Banach space of 

bounded sequences with range in E then the AP sequences An(E) 

form a closed subspace of L^tE).  As usual the argument E 

will be omitted when no confusion can arise. 

We point out that normality can be used, exactly as in 

the continuous case, to show that for any finite set of AP 
1        T 

sequences  an',*,,an w'-t^ range in possibly different spaces 
1     r 

E ,...,E  and for any  e > 0, there is always a langth L(e) 
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such  that in any  interval of length  L we can   find  a common 

e-almost period. 

Finally we  note  that  if f(t)   is  an AP  function  then 

the sequence     f    =  f{nk)     is an AP  sequence  for  any  real k. 

The  converse  is  also  true  as shown by Corduneanu   (page   47) 

but we  shall not use  that. 

-10- 
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2.     Properties  of  the Difference  Scheme 

We  consider  linear    £-step,   strongly stable schemes 

described as   follows. 

i z 
(2.1) I     ay =  k     ^     ß^y 

£ 

j=0 D  n+j j=0 D   n+D = k   I   ß, [A„4.-iy„4.^+f 

j = 0 j     n+j-'n+j     n4] 

Here we  assume  that we  are discretizing  the ODE 

(2.2) y = A(t)y  +   f(t) 

and yn = y(nk),  An = A(nk)/  fn = f(nk)  where k  is the 

time step. 

Associated with (2.1) we have the polynomials 

(2.3) p(x) = I     a.x3 ,   a(x) = l     ß .x3 

j=0 3 j=0  ^ 

It is well known (see Dählquist [6] or Heinrici [7]) that 

consistency implies that  x = 1  is a simple root of p(x) = 0 

and that 

(2.4) p' (1) = a(l) = 1 

where we have normalized the coefficients so that the common 

value in (2.4) is one. 

Strong stability of the scheme is achieved by restricting 

the size of the other £-1 roots of p(x) = 0.  Specifically, 

if we number these roots  x  , u= !,...,£,  then we require 

-11- 
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that  there be  a positive number     6   <   1,   such  that 

(2.5) x1 = 1 ,       |xu|   < e  <  1  ,        u = 2,.. .,£ 

Finally, we make two further assumptions. 

(2.6) x    distinct   , U "" £m    f     m      *      »      f    Aj f 

(2.7) xu   ¥   o U^     ä / •  •   * / X/     • 

/ 
(2.7) is necessary because to get an AP solution, the 

difference equation should be solved backwards and forwards. 

This assumption can be removed in the important case that 

the homogeneous ODE system is exponentially stable. Condition 

(2.6) can be removed in all cases and is included here only 

to simplify the following proofs.  The removal of these 

conditions will be discussed in Section 6. 

Now in working with a multistep scheme, the standard 

procedure is to convert it into a one-step scheme.  To do 

this we define the space E„ = ExEx...xE.  (We will usually 

write vectors in E. in column vector form.)  We give Eg   the 

norm inherited from this definition, namely if w e E. and 

^y1 

(2.8) 

then 

(2.9) 

w = 

M^ = max «y1« E ' 

Here we have explicitly indicated the E norm in (2.9). 
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We now  consider the  discretization  of the  linear 

inhomogeneous   system   (2.2).      If     w    = 

(2.10) 

n+£-l 

■'n 

then we  get 

w   . ,   =  C w    + kf n+1 n n n 

Here   if we  define     z     =  k A     , 
n n 

^-^     Cn  =  'C^n W 

-1 -1 {aSi1-ßZZn+Z)      ^-iW-l-'W*    • •• (V-^V^      ^OV^O^ 

I 0 

0 I 

0        ...      0 0 10 

f   = n 

0 

o 

-i 
I   ^ f 

j=o ]     n+j 

Observe that Cn e L(E£,E£) and will be just an ml*ml 

matrix in the case that E is an m-dimensional space (in which 

case it is called the companion matrix).  Note also that since 
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A is uniformly bounded in t,  the implicit term (anI-ß z  ) 
Jc       £  n+£ 

can be inverted,   for    k     sufficiently small,   uniformly  in n. 

We  finally point out  that if A and   f are AP   (L  )     then C 
oo n 

and   ^  are    AP   (l£)     and also  that    C given  in   (2.11)   is   a 

smooth   function   (in  the Frechet sense)   of  its   H+l  arguments. 

Now with A a  constant and   z = kA G  L(E,E)     we  consider 

for small     II zll     the  homogeneous  difference  scheme 

(2.12)     wn+1  =  U(z)wn 

-1 ü(z) = (vv)  (fw-vi15 

i 

0 

'V-V^'V-V* 

U(z) is a mapping, defined for small II zll , from L(E,E) into 

ME£'E£^'  Observe the following properties of U(z). 

(2.13) (a) U(z) is a smooth (in the Frechet sense) function of 

(b) U(0) has eigenvalues exactly x with eigenspaces 

E  , where r   a-i   \ x   y 
u .■* 

E u x y 
u J 

',     y G E 

(c) E  = © I     E 
u=l u 
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Now (a) and (b) should be clear.  To see (c) , note that the 

spaces  Eu  are closed and also that any two have only zero 

^1 
m common.  Let  w = .    and suppose  w has an expansion 

(2.14) 
£ 

W=  J 
u=l 

x  y 
u . u 

x y 
uJ u 

u 

Then  if we  define  the  vector    w  to be 

(2.15) w  = v w 

yi 
we can write 

V =  x £-1 £-1 
C£ 

Al '••    x£ 

1 ...    1 

i.e. V is just the Vandermonde matrix associated with the 

distinct numbers x^...^. (2.13c) now follows directly 

from the  invertibility of    V. 

The  representations   (2.14)   and   (2.15)   enable  us  to 

define  an equivalent norm on  the space Eg.     Specifically if 

w  is  expressed as  in   (2.14)   we  define 

(2.16) u II WH u    = max II y 
u u E 

That     II   IIu is  equivalent to     II   II ^     follows  immediately  from 

the  representation   (2.15)   and the  invertibility  of    V.     Note 

chat  the equivalence  of  these  norms   implies  the  equivalence 

of  the  operator norms   they  induce  on    L(E   ,E   ).     Of  course 
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this  paragraph  is  superfluous  in  the  case  that E  is   finite 

dimensional. 

For  future  use we point out that   (2.13b,c)   imply 

that U     (z)     exists   for small     II zll     and is  smooth  in  z. 

Now define  the  space    E     = ©     ^    E 
u>l u We have E = E.eE' 

and we note that E^^ is canonically isomorphic to E.  At times 

we will identify E, with E but this should not cause any 

confusion.  With respect to the decomposition E = E,© E we 

see that  U{0)  is in block diagonal form; symbolically, 

(2.17) U(0)   =[ 
D(0) 

1 „1 

^     0     B(0) 

here    D(0) :   E,   ■+ E1     and is   the  identity,   while B(0):   E^E 

and IIB (0)11      <   6.   This  is   the  operator norm induced on 

ME^E^)   by  the   II   IIu norm on E£     and  follows   from the  fact 

that B(0)   is   just multiplication by  x    on  the  space  E   . u ^ u 
We  can now state  the   fundamental  theorem of this  section. 

Theorem 1.     For small     II zll     there exists  an operator 

T(z):   L(E,E)   -^  L(E£,E£)   such   that 

(a) T(0)   =   I      (Identity  on  E^) 

(b) T(z), T~ (z)  are smooth in z 

(c) L(z) = T~ (z)U(z)T(z) is in block diagonal fo 

with respect to the decomposition E. = E, © E . 

(d) Writing L(z) symbolically as 

rm 

L(z) = 
D(z) 

0   B(z) ; 
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then  B(2)|2=0  =  B(0)    (from   (2.17))   and  llB(z)llU  <   6  while 

D(z)   has   an  expansion 

(2.18) D(z)   =   I   +   z  +  0(11 zll    ) 

where    E1    is  identified with E. 

Theorem 1  is  basically  trivial  and the proof  involves 

familiar  arguments.     First we note  that U(z)   is   smoothly 

invertible   for small  «zll.      (The  restriction  "for  small  11 zll " 

will not be  stated explicitly  in  the   future.) 

Next we  observe  that   (wl  -  U(z)) exists   for w in  a 

small  annulus  around  the  circle     |w[   =   0  and  this  holds 

uniformly  in  z.     This   follows   from   (2.13b)   and  the  geometric 

series. 

Now define  the  projections 

(2.19)     P(z)   =  271    J        (wl-u(z))~1  dw  ,       Q(z)   =  I  -  P(z)   . 

|w|=e 

That P and Q are projections is a familiar result which 

follows from the resolvent identity, 

(2.20) 

(w1I-U(z))"
1- (w2I-U(z))"-1 

= (W2-W-L) (w1I-U(z))~1(w2I- U(z))"
1 , 

calculating P by integrating around two slightly different 

circles, and interchanging the order of integration. It 

follows from the construction that P(z) and Q(z) commute 

with U(z) and that they are smooth functions of z. 
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It is  clear by  applying P(0)     to an  arbitrary vector 

w <E EJl     and using  the  expansion  given  in   (2.15)   that P(0) 

is  exactly  the  projection onto E     along E     and    Q{0)   is   the 

projection  onto E,   along E   . 

Now  define 

(2.21) T(z)   =  P(z)P(0)   +  Q(z)Q(0) 

Clearly T(0)   =1   and T(z)   is  smooth whence T~1(z)   exists 

and is   also smooth.     Note  that  this  holds   in either of  the 

norms 

(2.22) 

II u 
ii        or on  LCE^^E«).     Let 

-1 
L(z)   =  T      (z)U(z)T(z) 

We  claim L  is  in block  diagonal  form with  respect to 

the  decomposition    E^  = E1 ® E     .     This   follows  directly 

from the   fact   that    P(z)   and Q(z)   commute with U(z).     In 

fact     let    x e E1   ;   then 

(2.23)      ü(z)T(z)x =  U(z)Q(z)x =  Q(z)U(z)x =  w      (say). 

Now if    y = T     (z)w    and    y = y-,   + y1    with    y    e E, 

and    y    e E       we  have 

(2.24)      w =  Q(z)U(z)x     =  T(z)y  =  Q(z)y1   +   P(z)y1 

whence 

(2.25) P(z)y1  =  T(z)y1  =   0 

and so    y    =  0     by  the  invertibility of T(z).     Thus   L(z) 

maps    E^  ->■ E^^     and a  similar  argument  shows   L(z) :   E    •> E  . 
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N 

If we write   (using the notation  of   (2.17))     L(z)     as 

D(z) 0 D(z) :   E-i   -'■ Ei 
(2.26) L{z)   = , -, 

0       B(z) B(z) :   E     ->• E 

then we  see  that D(z)   and B(z)   are  smooth  in  z;  D(0)   =  I 

and llB(0)llU <   6.     It  follows  immediately by  continuity 

that 

(2.27) llB(z)llU  <   9 

for small  II 2II    .     Now   (2.27)   will imply  that  given  z^...^ 

with  II z .11   small     then 

N 

(2.28) II   TT B(z   )ir   <  K 
1=1 1 

for  a constant    K     independent of the     zi     and    N. 

It only   remains  to study  the   first  order structure  of 

D(z)   in order  to obtain   (2.18).     Expanding D(z)   about  z =  0 

we can write 

(2.29) D(z)   = I + C(z)   + 0(11 zll    ) 

where C is the Frechet derivative of D(z) at z = 0 and is 

a bounded linear map from L(E/E) into L(E1,E1) which we 

identify with L(E/E).  It is necessary to show that C is 

the identity, and as one might expect this will follow very 

easily from consistency. 

Let A be an arbitrary element in L(E,E) and let z = kA, 

A* = C(A) .  For y G E and identifying E1 with E, we 

-19- 

.- -^-^-. -. -- —;.,.....-...„- ■..,. „ _. _..a 



^—»■-»•wwi I JIUBLI     wm.mmt.niiit I«^,IJ 

calculate  the   following  limit 

(2.30) lim D(kA)ny  =   (I  +  kA '   +0(k2))ny 
k-K) 

nk=   t 

tA 

for  any  fixed    t  >   0. 

As  one would expect this   limit  is     eu" y    because 

the  difference   scheme expressed  in   (2.30)   is   consistent 

wi th   the  ODE     y  =  A'y . 

More  precisely  since 

(2.31) D(kA)H   <   1  +  kR 

for small k, where  R is some fixed constant, it follows 

that 

(2.32) llD(kArll    <   eK     , Nk   <   T,     0   <   t   <   T 

Let    xn     solve   the  difference equation 

(2.33) 
xn+1 =  D(kA)xn 

x o = y 

i.e. xn = D(kA)
ny.  Now if xn = e

A kny  then  xn satisfies 

the perturbed difference equation 

(2.34) xn+i = tD(kA) + 0(k2nxn 

where the term 0(k ) is uniform for nk <_  T. Equation (2.34) 

follows directly from the fact that  x(t) satisfies the ODE 

(2.35) x = A x 
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Letting    wn 
=  xn  "   xn    we can  show easily enough  that 

(2.36) llw   I   =  0(k)   , nk   < T   . 

In fact from (2.33) and (2.34) we obtain 

n 
D(kA)n":] 0(1U . (2.37) wn = k^ I     DUA)""3 0(l)w._1 

If we  use   (2.32)   to bound the powers  of D(kA)   and thus  II x II, 

we  then obtain   (2.36)   and  letting    k ■>  0    we  obtain 

(2.38) lim D(kA)ny = e^ y 

nk=t 

Recalling the identification of E, with E we define the 
y _ 

vector    y =     :     whence    y e E,. 
y ■L 

Thus   (2.38)   can be expressed 

f A  t e       y 

(2.39) lim L(kA)   y = 
k->0 

nk=  t A't e      y 

Now we  are  going  to show  that A1   = A by  calculating this 

limit directly  from the definition of L(kA).     In  fact since 

llu(0)llU =  1     it  follows  that    llu(kA)nllu    is   uniformly bounded 

for    nk _<  T     (and of  course  this  is  also  true  if we replace 

II   llU by       II   II Ä).     Then writing 

(2.40) L(kA)n  y     =     T"1(kA)   U(kA)n  T(kA)   y   , 

and letting k -»■ 0  such that nk = t,  using the continuity 

of T(z)  and the fact that T(0) = I  together with the 
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n 
uniform boundedness of the powers  U(kA) ,  we are left with 

(2.41) lim L(kA)n y  =  lim U(kA)n y  = 
k->-0 

nk =t 
k^O 
nk=t 

At e y 

At e y 

the last equality follows from the fact that a consistent 

and stable difference scheme is convergent. 

Since A was arbitrary, (2.41) together with (2.39) shows 

that A = A ,  which proves that the map C is the identity 

and this completes the proof of Theorem 1. 
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3.     The Exponentially Stable  Case 

We now  assume  that  the homogeneous  system   (0.1)   is 

exponentially stable.     Thus,   if    Y(t)   is   the  fundamental 

operator  solution  to   (0.1)      (Y(0)   =   I),     then  the estimate 

(3.1) llY(t)Y"1(s)ll   <  Ke"a(t~s)    , t  >  s   , 

will hold with positive constants  K and a.  In the sequel 

we will use K  as a generic positive constant so it will 

appear in contexts other than (3.1). 

We wish to prove a similar estimate for the homogeneous 

difference equation (see (2.10), (2.11)) 

(3.2) w , , = C w n+1   n n 

Now    Cn     is  invertible  for  all    n    by   (2.7).     Then   (3.2) 

has  a  fundamental  solution    W       (Wn  =  I)     which  is  simply 

(3.3) 

n 

n-1 
wn = FT C     , 

i=0     1 

"-„ = TT  c- 

n  >   0   , 

n  >  0 

It can easily be verified that  the  unique    solution 

to   (3.2),     w     ,   given initial data w.   is  simply n j 

(3.4) w    = W W.   w.   . n        n D     3 

,-1 Note  that  for n  >   j,     W W.       is  simply 
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(3.5) ,-1 n-1 
Vj   = ITC.  , 

i=] 
n  >   j 

,-1 In  the stable   case we will  only use    W W.        for    n   >   i 
n   ] —  J 

and we  can see   that  the  invertibility  of     c.;     is  not  required 

in  this  case  and  assumption   (2.7)   is   therefore not  required 

here. 

We  intend  to  show  that  for small k     (this will not be 

stated explicitly  in  the   future)      (3.1)   implies 

•a1k(n-j) 
(3.6) IIW W-1!!    <  K e n   ] n  >   ] 

where K is used as a generic constant and can be taken 

independently of k,  while  a = a + 0(k).  Thus since a > 0, 

a1 can also be taken independent of k  for small k. 

To attain (3.6) we suppose A(t)  is  C .  All derivatives 

that are assumed will always be required to be AP or L . This 
CD 

will not be  stated explicitly in the  future.     The  smoothness 

condition on    A    will be  removed in Section  6. 

Expanding    A     .     about    A      we  can write   (3.2)   as 

(3.7) wn+l 
=  U(kVwn + k 0(1)wn 

Here the 0(1) term is uniform in n  and the operator U is 

given by (2.12).  We are going to show that perturbations of 
2 

the  type    k 0(1)     preserve exponential  stability.     We   thus 

consider  the  unperturbed  system 

(3.8) wn+1  =  U(kAn)Wn 
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If we let  vn = T(k:An)wn , where the operator T is 

introduced from Theorem 1, and note that by the smoothness 
2 

of T  and A we have  T(kAn+1)   = T(kAn)   + k 0(1),  we  see  that 

we  should consider  the  difference equation 

(3.9) v   .,   =  UkA  )v 
n+l n    n 

where the operator L has been studied in Theorem 1. 

If V  denotes the fundamental solution to (3.9) then 

since L is block diagonal we see that V  itself is also 3 n 

block diagonal.  If we write V  in the form 

(3.10) Vn = 
n 

0  V 

v1-  0 n 
2 
n 

we  can  see  that   the  second part,   the  contribution   from the 

roots  inside   the  unit  circle,   causes  no difficulty.     In  fact 

for    n  >   j    we  have 

2   9~1        n~1 

vV:     = TT B(kA.) n   i !    I i 
J i=: 

(3.11) 

iiv2v2~ ii  < K en"j , 
n   D - 

where we have  used   (2.28)   and    K     as   a generic  constant. 

Since     9     is  a  fixed number  less  than  1    we  see  immediately 
2 

that (3.6) holds for V  where  a,  can in fact be taken n 1 

equal to a  for small k. 

We must now deal with V .  Neglecting perturbations 
2 

of k 0(1)  and identifying the space E,  with E we 
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consider the difference equation 

(3-12) xn+1 =   (I  + kAn)x 

i.e.     we have  reduced the problem to  the  study  of  the Euler 

1-step scheme. 

We will  compare    Xn   ,   the  fundamental  solution  to   (3.12), 

with    Yn     (= Y(nk))     where    Y    is  the   fundamental solution  to 

the homogeneous  equation   (0.1). 

Let     H(t,s)   =  Y(t)Y"1(s).     As   a  function  of     t, 

H  satisfies  the  equations 

(3.13) 

H  =  A(t)H 

H  =  A2(t)H  +  A(t)H, 

H(tft)   =   I 

Integrating   (3.13)   we obtain 

H((n+l)k,nk)   = I + k   i   H(nk+ek/nk)   d0 

(3.14) 
1  1 

=  I  + kA(nk)   + k' 6  de  d* H(nk  +  ^Gk,  nk)   . 

0   0 

Now since A is bounded it is a standard result (M&S, 

Theorem 3.1 C) ,  that 

(3.15)     llH(t,s)ll < K1(R)  for  |t-s| < R , 

where  R is any positive number.  This does not require 

exponential stability and in fact is an immediate consequence 

of Gronwall's inequality.  It now follows from the second 
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2 
equation  in   (3.13)   that  the  coefficient of    k       in   (3.14)   is 

bounded uniformly  in    n     and    k.     This  implies   that    Y       is 

the   fundamental  solution operator  to an equation 

(3.16)      Yn+1  =   [I+kDn(k)]Yn     =      [I+kAn  +  k20(l)]Yn 

where  the    0(1)     term is  uniform in n.     This  means  that we 

can  regard  the     x       equation   (3.12)   as  a perturbation of the 

Yn    equation.     We  point out that the  reduction we have obtained 

does  not  use exponential  stability  and so is  valid  in  the case 

that   (0.1)   has   a general exponential dichotomy.     If we  use 

the  stability,   however,   we  see  that    Y       satisfies  the ^ n 
estimate 

(3.17) II Y^T1!!    <  K  e"ak(n"j)    , n  >   j   . 

We must now prove the proposition that exponential stability 
2 

is  preserved  under k    perturbations. 

Theorem 2. Consider  two difference equations 

(3.18) yn+1  =  R(n,k)yn 

(3.19) x ^   =  R(n,k)x    + kS(n,k)x n+1 n n 

defined for small k.  Suppose that (3.18) is exponentially 

stable, that is  there exists constants K  and a  independent 

of k such that 

(3.20) IIY Y~h   <  K e-
ak(n-J)        n > j , 

n 3  — — J 
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where Yn  is the fundamental solution to (3.18).  We point 

out that we do not require  R(n,k)  to be invertible since 

we only study the solution Y^"1  for n > j.  m that case 

Yn is not invertible and we must use (3.5) in place of Y Y-1 

n j  ' 
but we will retain this notation for simplicity. 

Under this hypothesis there exists an  e0  such that if 

for small k, 

(3-21) llS^k)^ < e < E0 

where the sup in (3.21) is over n, then (3.19) is exponentially 

stable and if Xn is the fundamental solution to (3.19) (the 

dependence on k has been suppressed)  the estimate 

ti  nns « "   ~-l„      -a1k(n-j) 
(3.22) IIXnXj " 1 Kie 

where K1  can be taken independent of k and  a = a + 0(e). 

Before proving this we note that the case where  S(n/k) 

= 0(k)  is automatically covered.  The more general formula- 

tion will be used in Section 6  and more importantly in Part II. 

Note also that it is a discrete analogue to the Gronwall 

inequality and the proof is in fact immediately suggested by 

the proof of the Gronwall inequality.  This theorem is equivalent 

to a lemma of Engquist itself based on a theorem of Strang [8], 

but the proof given here is simpler than Strang's proof and 

much more suggestive of the Gronwall inequality. 

To prove Theorem 2 we first note that for n > j we have 

(3.23)      XST1»  Y  Y-1   +  k        J"        Y  YT1  s X        X-1 
n J       n 3 Ä=5+1 Vj    Vl VlXj 
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This   analogue  of  the variation  of  constants   formula can be 

verified immediately.     Using   (3.20)   we get 

(3.24)      IIX  X.     II 
n  3 

n-1 
1K  e-ak(n-j)   +  kK  eake     l     e-ak(n-£)   „-^-1 

l=i £"j 

Here     K     is   the  constant of   (3.20).     If we  redefine  K  as 

K ea        (for small k)     and define     v = eakn  II x  xT1«     we 
n, ] n   : 

can write 

(3.25) 
ii     a. 

v     .   < K + kKe     I     v.    . 
n-1 

j 
=     s n-l,j   ' n  >   i 

From   (3.25)   we  obtain 

(3.26) 

whence 

v =  Sn,j"sn-l,j 
n,D kKe -    n-l,j 

(3.27)      sn   ,     <      (l+eKk)n-i   s.    .      <     K,   eeKk (n-^    , 
no     - j,3     -      1 ' 

where     K       is  defined so that    s.    •   < K.     independent  of k 
■L J / J -i- 

and  j     (from   (3.25)   specialized  to n =  j+1 and the  fact  that 

v.    .   =  1) . 
J'3 

Inequality (3.27)  together with (3.25) and the defini- 

tion of vn .  yields (3.22) immediately and thus completes 

the proof of Theorem 2. 

Returning to our specific case, it should be clear that 

after several applications of Theorem 2 we can prove 

exponential stability for vn  defined as T(kAn)w  (see (3.8) 
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and the   following paragraph).     Since  in  terms  of  fundamental 

solution  operators we have 

(3.28) -  -"I -i -  --1 
WnW..     =  T      (kAn)VnV.   T{kA.) 

we obtain exponential stability for (3.8) and another applica- 

tion of Theorem 2 yields exponential stability for the full 

homogeneous system (3.2).  It is a simple matter to go from 

exponential stability to admissibility for the inhomogeneous 

difference equation 

(3.29) w n+1 = C w + kg n n   yn 

We first define admissibility in the obvious way. 
.n n 

The pair (L^LJ will be admissible for (3.29), for small 

k, iff for any sequence 9n  in L^  (3.29) has a unique solu- 
.n 

tion    wn  in    l£    and this   assignment is   a bounded mapping, 

i.e.   there exists  a K   (independent of k)   such  that 

(3.30) llw  II      <   Kllg  I 

An entirely analogous definition holds for the admissibility 

of the pair (Än,Än).  As in the ODE case we will show (Ln.Ln) 
oo ' oo' 

is admissible and then show that the solution is AP if the 

coefficients are. 

To show (L^LJ admissibility we merely write the solution 

n 
w = k  I   w W.  g. n . n    j=-oo n 3  yD-l 

(3.31) 

Exponential stability implies the convergence of this series. 
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which  can be  immediately  verified  to be a solution  of   (3.29) 

To  show    wn 6 L^    we estimate,   using   (3.6) 

(3.32)      Hw  II      <   llg  II   Kk     J     e~a^k  = 
3 = 0 

g II     K ^n "  —5-  <   llg  II   K 
1_ e~ak  -      n «> 

-x^ 
(using  x/(l-e~   )   ^  1  as   x -^  0)   and  this  yields   (3.30)   after 

a  redefinition  of K. 

To show uniqueness  is   trivial,     if    w      were  a bounded 

solution  to  the homogeneous  equation   (3.2)   we would have 

for  n   >   j, 

(3. 33) w    =  W W~     w. n n   3        ] 

and    wn  =   0     follows   immediately  upon   letting     j   ->  -oo. 

It remains  to show  that     (Än,Än)     is  admissible.     In 

fact if    N     is  a  common  c-almost period     for C       and     a 
n ^n 

we would have    wn+N- wn     to be  the  unique    L^    solution 

to  an  inhomogeneous equation with  inhomogeneous   term 

(3.34) 
k   [Cn+N"  Cn]wn+N  +  gn+N  "   gn 

and  for  fixed    k  >   0     the  almost periodicity of    w       is  a 
n 

consequence of (3.30). 

We can remove the factor 1/k in the denominator by using 

the expression (2.11) for C 
n 

(3.35) 

where     C    is 

Cn = ^kAn ^nV   ' 

a smooth  function  of its  arguments.   Expanding 

Cn+N~Cn     using   (3.35)     we  see  that  if    N     is  a common   e-almost 
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period for An and f , then N will be an 0(e)-almost period 

of wn , with the bound in the 0(e) term independent of k. 

Note that these two paragraphs follow only from (L",Ln) 

admissibility of (3.29) and do not depend on the stability 

of (0.1). 

The convergence of w to the solution y also follows 

very easily. If y is the unique AP solution to (0.2) we 

have 

(3.36)    I a-y ^."k I 3 .y 

= k[  I  a.j 
j  3  . 

(y(nk+ekj) - y(nk)) do 

l   ß.[y(nk+kj) - y(nk) ]] 
j  J 

= k g(k,nk) 

(The  summation is   from 0 to  £  in  the  above.)     Here  g(k,t)   is 

AP  in  t  for each k     and 

(3.37) llg(k,t)ll     = o(l)   , k -v  0   ; 

(3.37) follows from the uniform continuity of AP functions on 

the whole real axis. 
yn+£-l Now if w =, 

n      s 
y 

then (3.36) implies that w  is the n 
n unique AP solution   to the same equation as w except for 

an error, 

(3.38) 

f  g(k/nk) 

0 

-32- 

—  .- . , , - ■-■..■■■.- .... -. 



mmmtmamm a 
-■'"■ "■■!  ■■    ■ 

and   (3.37)   together with   (3.30)   yield 

(3.39) w  -w  II      =  o(l)    , k  ^  0   . 

We can obtain finer convergence results by imposing some 

smoothness conditions on A(t) and f(t).  In fact if the scheme 

has order of accuracy p, and A and f have p+1 derivatives, 

then y also has p+1 derivatives.  It is shown in Henrici 

(p. 247) that 

(3-40)      "    I   «jY^.-k   l   ß.y n+j <  kP+1  Gllyp+1 

where  the  constant G  depends  only on  the scheme.    (3.40) 

together with   (3.30)   yield 

(3.41) "n-Vco = O(^)   . 

We point out that these convergence arguments are valid when- 

ever we have admissibility and do net require stability. 

Before leaving the stable case we would like to discuss 

problems relating to the computability of the solution w . 
n 

Consider first errors in initial data.  Suppose we 

solve the exact difference equation (3.29) but use as initial 

data wj(k) = w0(k) + e(k)  where w0(k)  is the exact initial 

data for the AP sequence solution wn and e(k) is bounded for 

small k, i.e.  iie(k)ii < en.  Now the solution w* , which we u n 
solve for, will be 

(3.42) 

and we have 

w n wn + wne(k) ' 
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(3.43) "w'-wj = 0(e-akn) , n > 0 . 

Now in general we cannot expect e(k) ->■ 0 as k ->■ 0. 

This would certainly occur if we could obtain initial data 

consistent with the initial data of the solution y to the ODE. 

However this solution is known only by an improper integral 

involving not only the given forcing function f(s) but also 

the fundamental solution Y(t) to the homogeneous system 

which we could not expect to know explicitly unless A were 

a constant.  Thus the most we can assert is that, using fixed 

initial data (say w0{k) =0), if we integrate over a sufficiently 

long interval we will get the solution w up to some exponen- 

tially decaying error. 

Now let us consider round-off error.  If we could 

postulate that we solved a perturbed equation 

(3.44) w**, = C w** + kf + 0(kr+1) ,  n r 0,  r > 0 , ¥n+l n 

where the error is uniform in  n then we could relate this 

solution to w by n    J 

(3.45) 
** n -1 Wn       =   Wn    +    k       I       W^I       0(k    )     ' n    >    0     , n n 

j = l 
n ] 

-akr = o(kr)   . 

and we  can estimate  the error simply, 

n , oo 

(3.46)      Ilk     I    W WT1 0(kr)ll    <  krKk     I     e 
j=l     n   ^ r=0 

Let us further examine the validity of (3.44). If we 

include rounding errors in forming the companion matrix (or 

operator), together with the error of taking only a finite 
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expansion of the term (o^I - ß^kA^)-1 in the implicit 

case (see (2.11)), then we could assume that the linear 

part of (3.44) would be replaced by 

(3.47) ** r+l 
c  = c + o(kr+-L) . n n 

If we also assume an error 0(kr+1llw II)  in forming the 

product Cnwn we see we should postulate a system 

(3.48)w 
** 

n+ 
** r+l, r+l« **. 1 = CnWn  + kg + 0(ki"-L) + 0(ki-"r-Lllw  11) 

and in order to justify (3.44) we must show that the solution 

to (3.48) will be bounded for n >_ 0. 

We can write this solution as 

(3.49) 

**    **     p    -i 

n = Wnw0  + k 4 WnWj ^j-l 

n 
+ k[ ^ W w:1(0(kr) + 0(krllw** 11)1 

j=l n J 3-1 

Now if we  use  the  fact that 

(3.50) k     I    e 
r=0 

-akr 
= 0(1) 

** 
and define    h    = max IIw    II   we  can estimate    h    bv 

n       j=0,...,n       3 n    * 

(3.51) hn = 0(1)   + ki  hn 0(1) 

where  the 0(1)   terms  are independent of n.     This  implies, 

for small k,   the boundedness  of    IIw    II     and so justifies   (3.44) 

The  techniques  used in Section  2  of block diagonalizating 

the  companion    matrix were   first developed by Engquist 
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although  I was not aware  of his  work when my  formulation was 

developed. 

Engquist's procedure may  appear  to be more  complicated 

than  the procedure presented here,   but this  is because he 

proves  a more  general result;   namely  that  the companion 

matrix  can be block diagonalized  to within  an error of 
pl arbxtrary  order   (say 0(k     )).      (He  also does not restrict 

himself  to strongly stable  schemes,  but this  imposes  stability 

requirements  on  several  additional homogeneous  systems.) 

If one were  to consider his  procedure restricted to  a block 
2 

diagonalization up to 0(k ) then, while the two formulations 

differ in the lines of approach, they are equally simple. 

Engquist also shows that the upper block will agree 

with the Taylor series expansion of (0,1), up to terms of 

order p, if p < p1 is the accuracy of the scheme.  The 

proof of the first order structure of the upper block (the 

term DU) in Section 2)  is, I believe, somewhat simpler 

than his proof restricted to the first order term. 

I would like to point out that in the case we are 

considering (an exponentially stable ODE and a strongly stable 

scheme)  the extra fineness of the block diagonalization being 

carried to order p+1 will only give the advantage of the 

homogeneous system having a stability exponent -a+0(kp) 

instead of -a+0(k).  In particular in Engquist's study of 

the uniform convergence (for t ^ 0) of the solutions of the 

homogeneous equation to the solution to the ODE (see his 
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Theorem  3,   p.   24-27  and note  that what he  uses   as  a is 

what we  call -a)     one would still obtain uniform convergence 

of 0(k   )    (neglecting round-off and errors  in initial data), 

however the  decay exponent would be  -a+0(k)   instead of 

-a+0(kp) . 
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4.  Admissibility in the Case of 

General Exponential Dichotomy 

Here we are concerned with admissibility properties 

in the case that the homogeneous equation (0.1) has a 

general exponential dichotomy as described by (0.6) with 

P2 ¥  0.   The results will be valid in the infinite dimen- 

sional case, although in this case one must bear in mind 

that the situation described by equations (0.6) is not 

the most general form of an exponential dichotomy. 

First of all consider arbitrary homogeneous and 

inhomogeneous difference equations 

(4.1) 

(4.2) 

Wn+1 
= Cn(k)wn 

Wn+1 
= Cn(k)wn + ^n 

Here  Cn  is defined for  k € (0,]^] and is AP in n for 

fixed k, and is now assumed invertible so that a fundamental 

solution operator Wn , as described by (3.3), exists and 

is invertible for all n. 

Associated with (4.2) we have variation of constants 

formulas in both the forward and backward directions, 

n 

(4.5) 

(a) 

(b) 

w = 
n   n 0     ^  n 3 yj-l 

w = 

as  can be easily  verified. 

n   >   0 

0 1 

n = Vo  " k   .   I   AV^-l' n  <  0 
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Now we will define an exponential dichotomy for (4.1) 

as follows. Suppose there exist projections P, (k), P (k) 

=  I  -  P1(k),     such  that  the estimates 

(4.6) 

IIW^WT1!)    <   K  e-
ak(n-J)    i 

IIW^^:1!!    <  K e"ak(j"n) 

n  1 J 

j i n  , 

hold with K and a independent of k. The only difference 

between this and the ODE case is that the projections 

may depend on k. 

If we have an exponential dichotomy then (Ln,Ln) is 

admissible for (4.2).  In fact the unique bounded solution 

w is n 

(4.7) 

where 

oo 

w (k) = k  I   Gng. , 

(4.8) 
G'J = W P^T1 , :   n 1 3  ' 

= -w i.w.1, n 2 j 

n > J 

j > n+1 

Equation (4.7) is of course suggested by the ODE case and 

is easily verified using (4.6).  The admissibility bound 

(3.30) can be derived exactly as in the stable case as can 

(A ,A ) admissibility. 

We next observe that (l/J/l/J) (or (An,Än)) admissibility 

is preserved under perturbations of the linear term. In fact 

if we had a system 
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(4.9) Wn+1 
= Cn(k)wn + kSn(k)wn + k% 

where, for small k, 

(4.10) IIS (k)ll  < en n   <» — 0 

and e0  is some number to be determined, then the unique L 

solution can be found by defining w n   =  0  and w     to 
n;0 n;i+l be 

the  unique    L     solution  to 

(4.11) w ^    .        =  C w     .x1   +  kS w     .   +  kg n+i;i+i        n n,i+l n n,i yn 

(for simplicity   the  dependence  of C     and S     on k has been 
n     n 

suppressed).  If  c^ < 1, where K, is the admissibility 

bound for (4.2), the contracting mapping principle establishes 

^Loo'Loo) admissibility with admissibility bound 

K, 
(4.12) K2   (l-e0K1) 

Of course we will get AP solutions if D +kS  and g  are AP. 
n  n    ^n 

Now these two principles certainly settle the question 

of admissibility when the homogeneous system has a general 

exponential dichotomy.  Referring to the reduction obtained 

in Section 3 we see that after a nonsingular change of 

dependent variable,  vv= T(kA )w  ,  v satisfies the n      n n    n 
equation (see (3.8) ff.); 

r I+D (k)  0 '-".  vn+1 -{ I B v + k  0(1) v + kg 
n n   ^n 

n 

-1 Here  gn = 
T(kAn+1)gn-  By the boundedness of T and T  , 
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admissibility for (4.13) is equivalent to admissibility 

for (4.2).  But (4.13) expresses the homogeneous term as 

a perturbation of the system 

(4.14) X n+1 

I+D   0 n 

0    B 
X n 

n 

with   fundamental  solution 

X n 

Y 0 
n     n-1 

o   rrBiJ 
n  >   0   , 

(4.15) 
1=1 

f Y- 
X -n 

n 
-n+1 

I   Bi i=0     1 

-1 n  >   0   , 

and this has an exponential dichotomy with projections 

independent of k and in fact (after identifying E with E) 

(4.16) 

P1 = P1 8 P(0) 

P = P ^2  F2 

Here  P, and P- are defined in (0.6)  while  P(0)  is the 

projection onto E  along E, (see (2.19) ff). 

We thus obtain admissibility in this case and we point 

out that the convergence proofs given in Section 3 did not 

require stability and remain valid here. 
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5-  Existence of an Exponential Dichotomy for 

the Homogeneous Linear Equation 

We will prove here that admissibility for the inhomo- 

geneous difference equation 

(5.1) wr,.i.i = C w  + kg n+1   n n    J 
n 

implies an exponential dichotomy for the homogeneous 

tion 

equa- 

(5.2) W„J.-I   = C w n+1   n n 

The proof is very similar to a proof of the analogous property 

for the ODE case given in the Appendix.  It is a strictly 

finite dimensional proof and it may then be simpler to think 

in terms of matrices rather than linear operators.  We can 

then regard T(z) as a similarity transformation which follows 

an initial transformation putting U(0) into block diagonal 

form.  The matrix L(z) is strictly in block diagonal form 

and it is no longer necessary for us to continually make the 

qualification "identifying E, with E." 

If we let vn = T(kAn)wn , (5.1) is transformed into (see 

(4.13)) 

(5.3)  v n+1 

I+kD  0  ^ 
v + k 0(l)v + kg 

0    B  J n n    yn 
n 

(For simplicity we will write the inhomogeneous term in (5.13) 

as  g  rather than  g .) n ^n 
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If we call the leading matrix in (5.3)  Rn(
k)' then the 

unperturbed linear system 

(5-4) Xn+1 
= Vn 

has an exponential dichotomy with projections P1 and P2 , 

independent of k (see (4.15) and (4.16)), and we must exhibit 

an exponential dichotomy for the homogeneous version of (5.3). 

(5.5) vn+1 = Rnvn + k
20(l)vn . 

By admissibility (5.5) can have no L^ solution. Let 

S (k) and S (k) be the subspaces of initial data which give 

rise to solutions bounded for positive and negative n respec- 

tively.  We have  S  n s_ = {0} (suppresssing the k dependence) 

If we let S  be any complementary space we have 

(5.6) E^ = S+ © S_ e S 

with associated projections 

(5.7) ! = Pl + P2 + P3 

Our first task is to show S = {0}  i.e. P3 ■- 0. 

Define  L"  to be the submanifold of L^  of sequences 

with only finitely many nonzero components.  Let gn e L^ 

and let v  be the corresponding unique  L^ solution to 

(5.3).  Then using (4.5a)  we see that for large positive n 

we have 
on 

-1 
(5-8) vn = VV0  +  k   ^ Vj     gj-l] 
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and since     vn     is bounded the  vector in  the brackets  lie! 

in S       i.e, 

(5.9) 

(a) 

(b) 

,vn   =   -  k     I P0   vT1 g.   . 
j = l             ^ :)"1 

oo 

JV0   =   -   k    .^ P3  Vj1 ^j-l 

Similarly  looking  at     v    for n ->■ -«>    and using   (4.5b) 

obtain 

we 

(a) 

(5.10) 

Vo  = k   .   £     Pl Vj1  ^j-l 

(b) P3V0  =  ,c   .J„  P3 Vj1  ^j-l 
0 
I 

D = -oo 

Now  if we  simply  set 

(5.11) 
^0 = V1P3Z 

gi = 0 ,  i ft 0  , 

where  z is an arbitrary vector in E we see immediately 

that P3 = 0.  We can also see that for any given  g e Ln 
'n oo 

the  unique    L^  solution    v^     is  given by 

(5.12) 

n 
oo 

v    =  k     Z       Gn  g.   , n jf-oo     D   yD-l 

where    G.     is  given by   (see   (4.8)) 

(5.13) 

Gi   =    Vn  Pl Vi1   '       n   >   3 

-Vn  P2 Vj1   '       3  1 n+l   . 
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,n 
It is of course  G.  which we wish to prove is exponentially 

damped. 

-n 
Let     G.     be  the  Green's   function   associated with   (5.4). 

We  know 

(5.14) Gnll    <  K   e -ak|n-j| 

Now define H" = G" - G^ .  If g. e £"  and v  the corres- 
J    J   J        J ^ n 

ponding solution to (5.3), while  x  is the  Ln  soluti n on 

to the inhomogeneous version of (5.4), 

(5.15) x ,, = R x + kg n+1   n n   ^n 

Then     un  
=  vn   "   xn     is   the  unique  bounded  solution  to 

(5.16) un+l = RnUn +  k    0(1)   Vn 

We thus have 

(5.17)  un = k  J   H" g    = k
2  J   Gn  0(1) v., . 

j = -oo   -> -J j=-oo   J J ■L 

If we fix i and let  gi_1 = z,  g- = 0  for j ^ i-1 where 

z is an arbitrary vector in E^ , we then obtain, using (5.14) 

and the admissibility bound for (5.3), 

(5.18) Hnll < K, , 
1  -  1 ' for all n, i 

where K1  is some constant independent of k.  (The restric- 

tion "for small k"  is always understood.)  The use of (5.14) 

then implies the boundedness of G1?  i.e. 
3 

(5.19) 

where K2 is independent of k 
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We will now show that 

(5.20) P-^k) - P-JI = O(k) . 

Observe that P1  is independent of k.  To obtain (5.20) we 

note that P^! = HQ.  If we define g.., =  z, g. = 0 

(j ^ i) where  z  is an arbitrary vector we then have 

from (5.12) 

(5.21) Vj-1 
= k G^-1 g.^ = k 6f1 z 

Substituting into (5.17) we obtain 

(5.22)    u = kHnz = k3 
n    i I 

-jrr-c 
G^ 0(1) G1""1 

Now using (5.19) and (5.14) we see the sum in brackets in 

(5.22) is 0(l/k) whence we conclude that 

(5.23) IIHJH = 0(k) 

and setting n = i = 0 we obtain (5.20). 

Note that this proves that the ranks of the stable and 

unstable manifolds are unchanged for small k. 

We can now show quite easily that (5.19) can be replaced 

by an exponential decay factor. 

For a certain small positive  e  consider new systems 

— pk with  the  linear part of   (5.3)   and   (5.4)   multiplied by e i.e, 

(5.24) 

(5.25) 

v^,   = e  Gk[R    + k2 0(l)]vE 

n+1 l  n n 

e -ek  _       e 
x   . ,   = e R    x n+1 n    n 
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Now by Section 4 (see (4.9) ff.)  the inhomogeneous versions 

of (5.24) and (5.25) will both have (I£,L") admissible, if 

E is small enough.  But the new fundamental solutions are 

(5.26) 

(5.27) 

Vn = 

X  = n 

-enk „ e    V n 

-enk „ e    X n 

and clearly   (5.25)   will have   an  exponential  dichotomy with 

projections     P,   and P2  if  e  is  small  enough. 

Now  if     P1(k)   and ^2^   are   the   corresponding stable 

and unstable  projections   for   (5.24)   while  G1?.     is  the 

Green's   function   for   (5.24),   the   same   analysis  that  led  to 

(5.19)   will  yield   for  some  constant     K-,   , 

(5.28) ■,n 
IIG.      II    <  K0 D; e     -     3 

In particular  if     j  >  n+1,   (5.28)   reduces   to 

(5.29) V     P^  v:h   <  K,  e-ekii-n) 
n     2     ]       -     3 

and one part of the definition of an exponential dichotomy 

for (5.5) will have been shown if we can show P.. = P  , 

P2 = P2 . But this is a simple consequence of (5.20). In 
e    e 

:act if S  , S_  are the new 

for (5.24) then (5.26) yields 

e    e 
fact if S+ , S_  are the new stable and unstable manifolds 

(5.30) 
(a) S+  C   s+ 

(b) S_ c s_ 

But   (5.20)   shows   that   the  ranks   of P,   and  P     are equal 
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(being equal to the rank of P^   and similarly for P2 and P2. 

This shows that the inclusions in (5.30) are equalities and 

that 

(5.31) 
(a) 

(b) 

P = P Fl  Fl 
r 

P  = P 

Thus one part of the requirements of an exponential dichotomy 

for (5.5) has been shown and the other part will follow on 

replacing -e by +e. 

Lastly we point out that an exponential dichotomy for (5.5) 

implies one for (5.1) since in terms of fundamental solutions 

we have 

(5.32) Wn = T"
1(kAn)Vn T(kA0) 

whence  the projections    P1(k) ,   P^k)   for   (5-2)   are  related to 

P1   and P2 by  a  similarity  transformation 

(5.33) 

-1 (a)        P1(k)   =  T   x(kA0)P1(k)T(kA0) 

-1 (b)       P^k)   = T"J-(kA0)P2(k)T(kA0)   . 
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Miscellaneous Results 

This section is concerned with certain generalizations 

of the theory developed in the preceding section. We first 

remove certain restrictions which had been imposed previously 

in order to make the exposition clearer.  In Section 6A we 

will remove the restriction that A be C while in Section 6B 

we remove the restrictions (2.6) and (2.7) on the roots of 

the polynomial p(x) = 0 which lie inside the unit circle. 

We then consider certain trivial extensions of the 

theory.  In Section 6C we remark on the general L  (non-AP) 

case.  In Section 6D we consider the convergence of the 

mean value of our sequence solution to the mean value of 

the solution of the ODE and finally in Section 6E we 

consider the weakly nonlinear case. 
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6A-     Removal  of  the Differentiability ConrMfi .on on A 

First consider the case when the homoge neous equation 

(6.1) y = Ay 

is exponentially stable; i.e, 

(6.2) Y(t)y"i(s)ll < K e"a(t-s) ,    t > s. 

where Y(t) is the fundamental solution to (6.1).  We assume 

the A is AP but is not C1.  Now Theorem 2 does not require 

a perturbation 0(k2) but is certainly valid for a perturbation 

k o(l) (k - 0).  This leads us to expect that the requirement 

that A be C  can be replaced by the uniform continuity of AP 

functions on the whole real axis.  This is indeed the case 

as one can verify with little difficulty. 

In this subsection, we will merely trace through the 

proofs in Section 3 and indicate what changes must be made 

if A is not C . 

Discretizing (6.1) we obtain the homogeneous difference 

equation 

(6.3) w„.ui = C w n+1   n n 

where Cn is given in (2.11).  using the uniform continuity of 

A we see that (3.7) can be replaced by 

wn+1 = U(k An)wn + k o(l)wn (6.4) 

where the term o(l) is uniform in n (this will not be stated 
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explicitly in the future).  If we also use the uniform 

continuity of A to obtain 

(6.5) T(k An+1) = T(k An) + k o{l) 

we see that Theorem 2 will yield exponential stability for 

(6.3) provided we can show exponential stability for the 

system 

(6.6) 
n+1 

I+kA  0  i n 

B n 
n 

The  lower block  causes  no difficulty  and we  are  left with 

the  system 

(6.7) Xn+1  =   t1  + k An]xn, 

Finally we  can  show  that   (6.7)   is  exponentially  stable by 

using Theorem 2  to  compare  the  fundamental  solution X    with 
n 

Yn ^=  Y(nk))*  This reauires some modification, as the proof 

leading to (3.16) used the differentiability of A (see 

(3.13) ff) . 

Following  the notation of Section  3,   we  define 

H(t,s)   = Y(t)Y~   (s).     We  can  then write   (compare with   (3.14)) 

1 

(6.8)     H((n+l)k,  nk)   =  I  + kH(nkfnk)   + k   j   dB [H(nk+ek,nk) 

= I  + kA + k n 

- H(nk,nk) ] 

de   [A{nk+ek)-An]   H(nk+ek,nk) 

+ k | de An [H(nk+ek,nk)   - H(nk#nk)]   . 

-51- 

—   , ,         iii- -   -       -- -— - "^-~* 



■ .■w!m^!"»u   uniiumpvm'i- HIIäIPWV.",-.^IM->I*.«MM""" -r—.- -—-...Jin..,iI..^^fimtf., !..y..i.■u'./Vf i JimUl^l1«^'""?!:'^^-.-1.'.■••■'■        iJIfJW 7Trr?!7?m7-l-T^T7 TrT^-^T^™ rr^-Tj-T-^r-V—-:    NlU^il^JIll riwmjs-W-^.TT.nw-iTjpat^n^viT^j. 

Finally we see that if we use (6.2) together with the 

uniform continuity of A on the whole real axis and the 

equation 

(6.9) H(t/s) = A(t)H(t) 

then   (6.8)   can  be   rewritten   as 

(6.10) Y   ...   =   [I   +  kA    +  k  o(l)]   Y n't- in n 

and Theorem  2   is   immediately  applicable. 

We  thus  have  exponential stability   for   (6.3)   and hence 

(A   ,A  )   admissibility   for   the   inhomogeneous   version  of   (6.3). 

Finally we point out  that the  results  of Section  4, 

regarding  admissibility   in   the  case   that   (6.1)   has   a  general 

exponential  dichotomy   is   equally valid  if  A  is  not  C   ,   as 

the  contracting mapping    principle   (see   (4.9)   ff)   would 

certainly be  applicable   if  the perturbation  is  k  o(l).     The 

results   in  Section   5,   however,   use  crucially   the  differenti- 

ability  of A   (in   the   argument  involving  the  deduction  of 

(5.18)   from   (5.17))   and   it  has  not been  possible   to  extend 

this   result when A is  not C   . 
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n, 

6B.  Removal of Restrictions on the Roots  of p(x) = 0 

In Section 2 we prescribed two conditions on the roots 

of p(x) =0 which lie inside the unit circle; namely 

(6.11) 

(6.12) 

x distinct , u 

x / 0 u 
U    =    fc/     •      9     f    As   • 

(Recall that x1 = 1 and |x | < 6 < 1 for  u > 1).  We will 

now remove these restrictions. 

It should be clear by now that in the exponentially 

stable case (6.12) is unnecessary.  In fact the fundamental 

solution to the homogeneous equation is used only for n 2l j , 

and the equation (3.5) shows that the invertibility of the 

linear term C^ is not required for n 2l j.  Of course the 

notation W wT   is no longer accurate, but except for this 
n 3 

detail  the results of Sections 2 and 3 are valid without 

assuming (6.12). 

We deal next with the restriction (6.11). (Note that 

the root x, = 1 is always simple.)  The removal of (6.11) 

in the finite dimensional case is trivial.  In fact suppose 

the root x has multiplicity q > 1; i.e. 

(6.13) p1(xv.) = ... = pq"1(xr) = 0 

p4(xr) ^ 0 

It  is  shown in Henrici   (p.   214)     that  the effect of   (6.13) 

is  that  the eigenvalue  xr of U(0)    (see   (2.12))   will now have 
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(6.14) U(0) = 

nontrivial Jordan blocks.  Thus U(0) can still be put in 

block diagonal form (see (2.17)) 

I   0 

0  B(0) 

where B(0) is no longer diagonal!zable, but has all of its 

eigenvalues bounded by 9 in the norm.  Now since B(0) can 

be put in Jordan normal form with e instead of 1 on the 

superdiagonal,  for any  e > 0,  we can certainly choose 

a matrix norm such that 

(6.15) II B (0)11 < 6 

Since  all norms   are  equivalent on  a  finite  dimensional  space, 

the  proof of Theorem 1  can now proceed exactly  as  in  Section 2 

The  case when E  is  infinite  dimensional     can be handled 

in exactly  the  same  manner;   however since we  can no  longer 

appeal  to the   theorems  of  linear  algebra,   we will have  to 

carry  out  the  proof  in more  detail. 

It is  shown  in Henrici   (p.   214),   that  in  the  scalar case 

a basis   for the   generalized eigenspace E     corresponding to 

the  eigenvalue     x       is   {e     .}.   , where 
^ r r,j   ]=1,...,q 

(6.16) 
r 

•r,l 
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r.D 

r=l 
ft  U-r)x*-   ^"^ 

ft   (n-Dx^^-1^ 

fl   (J   -  r)x 
r=l 

j   >  1 

One  can  verify easily   that in  fact 

(a)     U(0)   ir/1 = xrer/1 

(6.17) 

(b)       U{0)   e      .   = x    e      .  + e     .   .    , ro r    r,] r,j-l j   >   1, 

Also since  the  vectors     e     .     form a new basis   the  £  x  £ r/ 3 

matrix with columns  e  . is  nonsingular.  Wow in order 

to  have e instead of 1 on the superdiagonal, we replace e 

by e  . where 
r,: 

(6.18) j-1 - e  . = eJ   e  . 
rrj        r,: 

(see Bellman [9], p. 198).  Here  e > 0 is to be specified. 

The matrix with columns  e    is still nonsingular but 

(6.17b) will now be replaced by 

(6.19) U(0)e  . = x e  , + ee   ,. r,D   r  r,3     r,:-l 
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Now the extension of this to infinite dimensional space 

is very simple and follows closely the procedure of Section 2. 

For any vector y e E  define the vector e  •(y) G E0 by 

f     3 

(6.20)     e^ ,(y) = e1""1 

FT (Ä-r)x£"jy 
r=l 

|~T (j + l-r)x y 
r=l 

Equation (6.19) clearly generalizes to 

(6.21) 

U(0) e   (y) = x e   (y) + e e     (y) ,  j > 1 L'J rr,] r,j~i 

U(0) ertliy)   =  xr er^1(y) 

We now define the space E  . = {w e E„ such that r, ]        I 

w = e  .(y) for some y G E}.  Clearly the space E  . is 

closed for all r and j.  Furthermore we have 

(6.22) EQ = e   I   E 
Ä      ''       rfj 

This follows by the same argument as that given in Section 2 
(  ^1 1 

(see (2.14) ff) .  In fact if w = | I 
I x^ J 

and we had an expansion 

is a vector in E £ 

(6.23) 
f Xl " 

^ H 
=  I  e  .(y  .) 

L.     r,i -^r,]' 
r/D 

then the {y  .} would be related to the {x.} by multiplication 
r, ] i 
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by  a nonsingular  Z  *   i  matrix and  this  establishes   (6.22). 

It  also  follows   from this   that  if we  define  a new norm on 

E    by     llwllu = max II y^   J_  then  II wll u is  equivalent  to II wll ^ 
* •        r, j   ji r» J 

(max  II x. II „) . 
i   :L E 

Now if E1 is defined as E1 l   (the root x, is simple) 

while E  is defined as  ©  J  E  . , then, exactly as 
r>l,j  ^ 

in Section 2,  we see that U(0) is in block diagonal form 

with respect to the decomposition E  = E, © E , and we can 

write (see (2.17)) 

(6.24) U(0) = 
D(0)   0 

0   B(0) 

where     D(0):   E,   •* E,   and  is   the  identity,  while  B(0) 

and  for  e   sufficiently  small    we have   from  (6.19) 

(6.25) II B (0)11 
u 

The proof of Theorem 1 can now be carried out exactly 

as in Section 2  if we make the final observation that the 

spectrum of U(0) is exactly {x }•  This should be obvious 

and follows from the fact that on each "generalized eigen- 

space"  E  = ® )• E  . , U(0) - AI (for A ^ {x }) acts as r     .  r, j u 

the matrix 

xr-A  e 0  .  .  . 

(6.26) 

0  x -A 
r 

and the inverse is obtained merely by inverting this matrix. 
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6C.  Extension to the L Case 
 ■ 00   

Here we would like to make the simple observation that 

the difference equation theory, like the ODE theory, is 

essentially an L^ theory wiiich produces AP solutions when 

the coefficients are AP. 

In fact, if we now agree that derivatives are to be 

understood as L^ instead of AP, the theory developed in 

Sections 3, 4 and 5 is entirely valid in the L  case, with 
■* 00 ' 

only one unimportant exception.  The single exception is 

the proof given in (3.36) ff of the convergence of the Ln 

in the case solution w to the vector w = n n    : 
I Yn 

that the coefficients are not smooth.  In fact if we 

refer to (3.36) and (3.37) we see that (3.37) need not 

be valid because the function y which is C  (we take A and 
" 00 

f continuous) need not be uniformly continuous on the 

whole real axis.  In this case we have not been able to show 

that wn •> wn  uniformly for all n but only uniformly for nk 

lying in compact intervals. 

To see this let us write w (k), w (k) to indicate n     n 

explicitly the dependence on k.  Now if the initial data 

for wn CO is consistent, that is 

(6.27) wo{k) -M 

(  Yi 

I Yl J 

for some vector y. e E, then it is well known (see 

Henrici, p. 244) that w(k) must converge uniformly on 
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compact subsets,   to some  solution to the equation 

(6.28) y = A(t)y  +   f   . 

But since every solution to (6.28) but one is unbounded, this 

limiting solution can only be the unique L^ solution y(t). Thus 

we must show (6.27) and the proof of this will in fact show 

that the vector y, in (6.27) is y(0) . 

We assume at least that A is C  (with bounded derivative) 

so that the results of Section 5 are applicable. We can then 

write 

(6.29) 
-i= —oo J 

.n 
where  g  is  given  in   (3.37),   and G.   satisfies  the estimate 

(6.30) 
-a  kin-] 

«G  II   <  KT   e     ■L 

Observe  that  g(k,t)   -> 0 uniformly  for  t in compact  intervals.   Let 

T be  unspecified  for  the moment and rewrite  the  sum in   (6.29)   as 

(6.31)   wn-wn= k I      G?g(k,(j-l)k)+k       I G°g(k, (j-1)k) . 
u |jk|<T  J |jk|>T    ^ 

The first term ■> 0 because g(k,t) -> 0 uniformly on the compact 
-ouT 

interval [-T,T]. The second term is 0(e   ) as we can easily 

see from (6.30). Thus by first choosing T sufficiently large 

to make the second term small, and then choosing k small enough 

to make the first term small we see that HWQ-WJI •> 0 (k ->■ 0) and 

this establishes the convergence of w  to w uniformly on 

compact intervals. 
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6D.     Mean Value Properties 

Let    an 
G A   .     It is  shown  in Corduneanu   (p.   48)   that 

the   limit 

(6.32) 
1 n+N-1 

lim N        ^ a-i    5   in(an) 

N^«> j=n        J n 

exists   and  that  this  limit  is  uniform and independent of n, 

which we henceforth set equal  to  zero.     This  is  of course 

the exact analogy  to  the mean  value  of  an AP  function 

T 

(6.33) lim -  f (t) dt 5 m(f) . 
T-)-oo    J 

0 

Now if wn is our AP sequence solution, we would like to 

study the behavior of m(w )  as k ^ 0.  Define w as 
n n 

(  Yn+Jl-1 

(6.34) 

n 

where y is the AP solution to the ODE 

(6.35) y = Ay +  f 

Clearly 

(6.36) m(wn)   = 

f m(yn) ) 

m{yn) 

Now since   (see   (3.39)) 

(6.37) lw -w  II     =  o(l) 

k-^l 
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we must compare m(yn) with m(y).  We first claim for any 

AP function g we will have 

(6.38) m(gn) ■k^r> ^^ 

where gn = g(nk).  This is obvious because (6.38) holds if 

g is a trigonometric polynomial and for arbitrary g, we 

simply approximate by a sequence of trigonometric 

polynomials. 

Now (6.38), together with (6.3?] and (6.34), certainly 

yields 

(6.39) m(w ) n'  k^O 

(  m(y) ) 

m(y) 

We now  concern  ourselves with  the  rates  of  convergence, 

assuming smooth  coefficients.     If A and  f are  CP+1   (so  that 

y  is)   we  can  replace   (6.37)   by   (see   (3.41)) 

(6.40) !w -w  II     =  0(kp) n     n  ■»       ^ v^   / 

where p is the order of accuracy of the scheme.  It 

therefore follows that 

(6.41) m(w ) = n 

f m(yn) 

\ m(yn) . 

+ 0(kp) 

and  it  is  only necessary  to study  the  convergence  of m(y  ) 

to m(y).     in  fact  for  any AP   function y d cr+1 we have 
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(6.42) m(yn)   = m(y)   + 0(kr+1) 

Equation   (6.42)   is   an  almost periodic  analogue  of  a 

theorem of  Isaacson  and Keller   [10]   for periodic   functions 

(p.   340)   and in  fact the proof is  very  similar,   and  is   a 

simple  consequence of Taylor's  theorem.   Letting t    = nk 
n 

and  s  e   [0,1]  we  can write 

(6.43)      y(tn+sk)   =  yn  +   (sk)yi  +...+ iÄ.    * +  Q^^) n n 

where  the  remainder is  uniform in t  since yr+1  is  AP. 

Integrating   (6.43)   from s  =  0  to s =  1 we obtain 

Vl 1 
(6.44)        J     y(tj   dt = k J   y(tn +  sk)   ds 

n 

k|Vk+---   (7TT)T^ + °(kr+1)l- 

If we sum (6.44) from n = 0 to N, divide by Nk and let N -> « 

we obtain 

(6.45)  m(y) = m(yn) + | My^  + ...  _£__ m{y^   + 0{kr+l) 

Now  ifr=0,   i.e.   y     isC       the  terms  involving m(y1) 

through m(yn)   are missing and we  obtain   (6.42).   For  r  >  0 

we  assume   (6.42)   holds   for  j  =  0,   ...,   r-1.     We  can  then 
1 r write,   as  y is  C     , 

(6.46) 0 = mfy1)   =  m(yj)   + 0(kr) 
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and similar expressions for m(y ) for i - 2,...,r since 

yi  e c^r~:i^+1 (we have used the obvious fact that the mean 

value of a derivative is zero), to obtain (6.42). If we now 

apply this to (6.41) we obtain 

f  m(y) 

+ 0(kp) 

m(y) 

(6.47) m(w n 
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6E-  Weakly Nonlinear Equations 

Consider the equations 

rt 

(6.48) 

(6.49) 

(6.50) 

y =  Ay 

y =  Ay  +   f(t) 

y = Ay  +  h(t/y) 

If  any pair of  function  spaces   (B,D)   is  admissible  for 

(6.49)   the  contracting mapping principle provides   a  technique 

to obtain D-solutions  to   (6.50)   under  certain conditions  on 

the nonlinear term    h(t,y),     the  most important being  that 

h has   a  small Lipschitz  constant     (see Hartman   [11], 

Chapter  12) . 

The  case of   (Ä,A)     admissibility  is  particularly  simple. 

We  require   that h be   almost periodic  in  t,   uniformly  for y 

in  compact subsets   (see Hale   [12]   pp.   113  ff).     This  simply 

insures   that h(t,x(t))   will be AP   for  any AP   function  x. 

We  also  require  that 

(6.51) llh(t,x1)   - h(t,x2)lloo   <   e1llx1  -  x2ll 

for any x1/x2 6 E.  The restriction on e  is simply 

(6.52) e.^ < 1 

where Kj^  is   the  admissibility bound  for   (6.49)    (see   (0.3b)) 

The  unique AP solution to   (6.50)   will simply be  the  limit 

of the  iterates 
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(6.53) y° = o 
i+1 is the unique AP solution to 

yi+1 = Ayi+1 + h(t,y
i) . 

This is of course an immediate consequence of the contracting 

mapping principle. 

The same proof will yield AP sequence solutions to the 

discretized version of (6.50). 

(6.54)     wn+1 = Cnwn + k g(nk,k,wn+1,wn) 

Here  the nonlinear term is 

-1 

(6.55)     g(t/k,w,w)   = 

f   (aÄI-k3aA(t+Äk)   ■L[ßÄh(t,xÄ_1) 

£-1 
+     l     ß.h(t,x.)] 

j=0     ^ J 

where    w - 
( *l-l 

x. 

r x 

and    w = 
l-l 

x. 
Observe  that g is, 

for  fixed k,  AP  in  t uniformly  for w  and    w in compact 

subsets,   and  that g will have  an  OU,)   Lipschitz  constant 

which we call  e,   i.e. 

(6.56)     II g(t,k,w2,w2)   -  g( t ,k ,w1,w1) II ^ 

e max  [llw2-wJI    ,  llw2-wJI]   . 

Now if K  is  the  admissibility bound  for  the   linear inhomogeneous 

version  of   (6.54)    (see   (3.30))   and     y =  eK  <   1 then   (6.54) 
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will have a unique AP solution w  , which in fact will be 

the limit of the iterates w  . defined by 
n; i ■' 

(6.57)  wn;0 = 0 

wn-i+l  :'"s the ""i^1-16 AP solution to 

Wn+l;i+l 
= CnWn;i + l + k^nk'k'Wn+l;i'

Wn ji) 

This is an immediate consequence of the contracting mapping 

principle and we note for future reference that 

(6.58) w -w   II  = o(ijm) . n  n; m oo 

Now the first thing to consider is the convergence of 

w  to w defined as n    n 
r y n+£-l 

yü 
where y is the solution to 

(6.50) (assuming of course that (6.52) holds).  In fact 

as was seen in Section 3 w satisfies (6.54) up to an error n 

k  o(l)      (0(kp     )        if everything is  smooth).   Hence  the 
k^l 

difference     z^  = w  - w    is   the  unique  AP  solution to n n       n ^ 

(6.59)      z   .,   =  C   z     +  k[g(nk,k/w ^1+   z   , , ,w +z   ) n+1 n n ^ n+1       n+1    n    n 

- g(nk/k/wn+1,wn)]   +  k  o(l)    (0(kp+1)) 

and we have 

(6.60) V- - ^'Voo +  o(1)    (0(kp)) 

and since  p < 1  this settles the question of convergence. 

We now examine the question of the computability of 

the solution in the exponentially stable case; that is when 

we have constants K and a such that 
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(6.61) llvyrt   < K e"0^""^    , n  >   j, 

where    W       is   the  fundamental  solution  to  the homogeneous 

version  of   (6.54). 

To do  this we  use   (6.58)   to reduce  the problem to a 

study of  the  effect of round-off errors  and errors  in  initial 

data on  the  solution w for  a  fixed m.   This will be  a 
11 / III 

simple consequence of the stability results of Section 3 

(see (3.42) ff) for the inhomogeneous equation. 

In fact the results of Section 3 show that at the 

first iteration we would solve (for n ^ 0) for a solution 
* 

w^ , which is related to w  -.by n; 1 n; 1 -^ 

(6.62) w*;1 = wn;1 + 0(k
r) + 0(e"akn) . 

We now consider the effect of this error on the second 

iterate.  Assuming, for the moment, exact calculations and 

* 
exact initial data, we obtain a solution w  ~ which solves n;2 

the  equation 

(6-63)     Wn+1;2  =  CnWn;2  +  k   ^(nk'k'wn+l;l'
Wn;^    ' 

If we  let     2n#i   = w     .   - wn>i   for  i  =  1,2     then we obtain 

(6.64)  z   0 = C z   + k[g(nk,k,w ., ,+ z ^ . ,w ^+z     ,) n+l;2   n n;2    ^^     n+l;l   n+l;l n;l  n;l 

- g(nk,k,w ,T T »w  ,)] ^      n+1;1 n;1 

The last term can be written (using (6.62)) as 

k 0(kr) + k 0(e"akn) and we have 
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(6.65)  z 
n 

n;2 = k .1 WnWi  0 ^""j + ^  [  W wT1 0(e"ak^) 
3=1 j=l  n ^ 

= 0(kr) + 0(e-
akn kn)  =  0(kr) + 0(e"

aikn 

where  o^  can be arbitrarily close to a.  We have used 

(6.62), (6.61) and the trivial fact that t = 0(e'5t) for 

any positive 6 . 

It is now obvious that (6.65) is preserved if we 

include in the equation for w*;2 (see (6.63)) the effect 

of roundoff and errors in the initial data of w* 
n;2 

(compared with   the  initial  data  for wn;2)   and it  is  also 

obvious   that  this  process  can be  repeated   for m itera- 

tions,   for  any   fixed  finite  m,   and  this  establishes   the 

computability of  the  solution w   . n 
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Part II.  Extensions to Partial Differential Equations 

We will now use the techniques of Massera and Schaffer, 

in the simple exponentially stable case, to obtain AP solu- 

tions to a certain class of inhomogeneous partial differential 

equations (PDE's) to which one can apply ODE formalism by 

use of the Hi lie Yoshida Theorem.  The homogeneous equation 

has been extensively studied by Krein [13], to which we will 

refer often.  A more succinct study of the Hille-Yoshida 

Theorem can be found in the appendix of Lax and Phillips [14]. 

Throughout Part II E will denote an infinite dimensional 

Banach space. 
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7.  Existence Theorems 

Consider the linear equation 

(7.1) Y = By 

where B  is   an  unbounded operator.     The  study of  the solutions 

to   (7.1)   has  been  answered by  the Hille-Yoshida Theorem in 

the  case   that  the  resolvent    R,(B)      (=   (Al-B)~   )   satisfie A iS 

the  inequality 

(7.2) llRA(B)ll    <_ Y     ' X   >   0   . 

A more general formulation is given in Krein (in particular 

Section 2, Chapter 1).  Krein shows that if: 

(7. 3)  (a)   B is closed 

(b) B  is  densely defined 

(c) IIR"(B)II   <^ —     ,       R.P.   X   >  oj   , 
(Re   A-  üj)n 

then  there  exists  a semigroup     Z.    ,   t ^ 0   ,   such  that: 

(7.4)      (a)        Z     is  strongly continuous 

(b) Z0  =  I 

(c) IIZtll   < Me^ 

(d) lim [ZA-I]e/A converges iff e e DD 

A^O A B 

and in that case it converges to Be 

(e) if e £ D  then for t ^ t0 the unique 

solution to (7.1) such that y(t0) = e 

is simply y(t) = Z   e (uniqueness is 
t-t:0 
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shown in Theorem 2.7, page 47) 

(f)   Zt: DB "" DB and commutes with B for t > 0 . 

For a well posed problem we obviously require w < 0 in (7.4c) 

To insure exponential stability we are going to proceed as 

if cu = 0  and introduce our own damping terra which will be 

allowed to depend on t.  The reader should note that if 

ÜJ < 0  this term is not necessary.  It is well known (see 

Krein, page 4 3) that one can always introduce an equivalent 

norm so that the factor M in (7.4c) can be replaced by 1, 

however we will eventually approximate B by a family of 

bounded operators  B,  where n 

(7.5) " z'J = e h II < M 

and we may not be able to introduce a norm so that M can 

be taken as 1 for all h, and thus we will leave M unspecified, 

Now to make the homogeneous equation exponentially 

stable we introduce a damping term -6(t) and consider 

the equation 

(7.6) y = [B - ö(t)]y 

For conditions   on  6  we  first  let it be  a scalar AP   function 

such  that 

(7.7) R.P.    (m(6))    >   0   . 

This implies that if g(t,s) = expj- j  dr 6(r)| then 

(7.8) |g(t,s)| < K e"a(t-s) , 
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as can easily be seen. 

It is also possible to permit 6 to be an AP operator 

function satisfying certain commutivity properties. Speci- 

fically if Y(t) is the fundamental solution to 

(7.9) Y = - (SY 

then 

(7.10) (a)   llY(t)Y"1(s)ll < K e"a(t"s) , t > s 

(b)   Sit),  Y(t), Y- (t) commute with Zr 

for all t and all r > 0 

(c)   Sit),  Yit),   Y~1(t) map D  into itself 

and commute with B. 

These hypotheses permit us to essentially treat 6 as a 

scalar in the following analysis.  If we define 

(7.11) g(t,s) = Y(t)Y"1(s) 

then the "fundamental solution" to (7.6) is 

(7.12) g(t,s)zt_s , t > s, 

and 

(7.13) llg(t,s)Zt_sll < KMe-a(t-S) E K e-a(t-s) 

after a redefinition of K. 

Now  consider  the  inhomogeneous  equation 

(7.14) y =   [3-6]y +  f(t) 

where f G A(E) or C^E).  We want to study bounded (for all t) 
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p: 

solutions to (7.14).  First we see that any such solution 

is unique.  In fact if w(t) were a bounded solution to 

(7.6) we would have (for t > s) 

(7.15) w(t) = Zt_s g(t,s) w(s) 

and w E 0 follows immediately on letting s  -*■ -°°. 

It is equally simple to see that any C^ solution must 

be given by 

t 

(7.16)   y(t) =  j g(t/s) Zt_s f(s) ds E c(f) . 

This is in fact an immediate consequence of letting tn •* -00 

in the variation of constants formula 

t 
r 

(7.17)  y(t) = g(t,t0)Zt_t y(t0)+ | ds g (t, s) Z^f (s) 

which is proved in Krein (Theorem 6.1, page 129) for the 

autonomous case, and it is a trivial matter to see that the 

same proof will work if 6 is time dependent. Note that (7.17) 

need not be a solution to (7.14), but any such solution 

must be given by (7.17). 

We now consider the operator C defined by (7.16). 

C is a bounded operator mapping Lm -*■ L     .     Boundedness is 

an immediate consequence of (7.13) and in fact 

(7.18) yll  < K (= -) II f 

The integrand is obviously continuous if  f e C^ and the 

only point in question is its measurability for a general 
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f e Lro   (for measurability of  functions  in  a Banach space 

see Hille  and Phillips   [25]).     However it  is  shown by Krein, 

and will be  used  crucially  very shortly,   that  Zr  is  the 

strong limit,   pointwise,   of    eV where     Bn   is  I bounded 

operator     (Theorem 2 .9,  page   48) .     since       e^"" win be 

norm continuous   this  establishes  the  integrand as  the 

pointwise  limit  of measurable   functions,   hence measurable. 

We will now show  that    y     as  defined in   (7.16)   is  a 

solution  to   (7.14).     We will make use  of  the  above mentioned 

approximation  theorem of Krein   (Theorem 2.9).     it  is  shown 

that there  exists  a  squence  of bounded  operators Bn  such  that 

(7.19)      (a)        »{B-Bn)ell   -^^   o      (Ve e  ly 

(b) " (Zr-Zr,el1   1^r>  0     Ve   ,   r  >  0,  where  Zn =  e^' r 

(c) llzjjll    < M   ,     r  >   0 

(d) Bn,   zJJ   (r >  0)   satisfy  the  same  commutivity 

relations with   6{t)   (7.10b,c)   as  does B  and Z 

We  only have  to point out  that   (7.19d)   follows   from the 

explicit definition  of Bn  as     -X^  -   ^   (B   )   where   An  + « 

(see Krem,  page   49).     We point out  that ?he  operators^ 

cannot in general be  considered as  spatial discretizations. 

A family of such  approximations will be  assumed in  the 

following section. 

Now consider  the operators  Cn(f)   defined by 

r' 
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(7.20) 'n  =     J   5(t's)   Z?-s   f(s)   ds   E cn(f)   * 

It  follows  immediately  that  the  operators  C     are  uniformly 
n 

bounded  operators  mapping L    into C     and  in  fact 

(7.21) Hy  II      <  Kllfll 

where we take the same bound as in (7.18).  It is also 

immediate that y  is the unique C   solution to n -'oo 

(7.22) v    =   [B -6]y     +   f n n      •'n 

and yn  is AP  if  f  is. 

We  are  going  to show  that    Cn -► C  strongly in  a certain 

subspace  of L^.     Specifically define     S     to be the subspace 

spanned by  the   functions whose range  has  compact closure.   It 

is well known   (see Amerio   [16])   that  Acs.     For  f e  S we 

will have 

(7.23) cn(f)  + C(f) 

To show   (7.2 3)   note   that by  the  uniform boundedness  of C 
n 

it is  sufficient  to  show  it  for  a dense  subset of S  and by 

the  definition  of S  it is  sufficient  to  take   f as 

n 
(7.24) =     I     xAt)e 

j=l     => => 

where  e. e E and XA   is the characteristic function of a 

measurable set.  By linearity we only have to work with 

one term in the sum in (7.24),  Thus if I is some measurable 
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set  let     f =   Xle.     Then wn(t)   = y(t)   - yn(t)   is  explicitly 

oo 

(7.25)        wn(t)   =   I   x(t-r)   g(t,t-r) [Zr-zJ]e     dr   . 

0 

Estimating   (7.25)   We  obtain 

oo 

(7-26) "^L  IK  |e-arll(zr-zj)ell   dr 
0 

and   (7.2 3)   is  an   immediate  consequence  of  the  Lebesgue 

dominated convergence  theorem. 

Observe  that   (7.23)   implies   that C(f)   is   continuous 

if f e s   and it  is  AP  if  f is. 

Now consider  the  almost periodic case.     First we point 

out  that if  6   and  f  are C1   (AP  derivatives)   then y is 

also    and  in   fact 

• • • 
(7.27) y  -  c(-6y  +   f) 

This  is   trivial  if we  observe  that 

(7.28) ^   =  Cn(-6yn   +   f) 

and if y  is  defined  to be  the  right-hand side  of   (7.2 7)   we 

have 

(7.29) y-yn=   [c-C^] (-6y)   +  Cn (-6 (y-yn) )   +   [C-Cn](f)   , 

and clearly 

(7.30) ||   (y-y    )||         >    0 

Equation (7.27) is now an immediate consequence of letting 
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n  -+ 0°  in   the  equation 

(7.31) Vn^   '  W   =   I     yn^   dt 

We next show that y satisfies  an integrated version 

of (7.14).  Specifically 

(7.32)  y(t1) - y(t2) 

^ I2 )2 
= B J  dt y(t) - J  dt 6(t)y(t ) + j  dt f (t) . 

Since DB is dense and B is closed it is sufficient to show 

(7.32) when f is of the form 

(7.33) f = e   b , b £ DB. 

Now  observe   that  Bf  is  AP.      It  certainly   follows   that 

(7.34) By  =  C(Bf)    . 

In fact this holds whenever Bf e C^ and is a simple conse- 

quence of the closure of B, approximating the integral in 

(7.16) by Riemann sums over finite intervals and then 

noting that B applied to each sum is the Riemann sum 

approximating C(Bf). 

Now the same property certainly holds for B  and C  i.e, J n     n 

(7.35) By  = C (B f) n-'n   n n 

Finally  since by its construction B   commutes with Z 
n r 
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(Krein,   Theorem 2.9)   we  can write 

(7. 36) B  y  =  C(B   f) 
n n 

Since yn satisfies (7.22) we have 

(7-37)  y^t,) - yn(t2) 

/2 t2 t2 
= Bn J dt yn(t) " J dt ö(t)yn(t)+ f dt f(t) 

f2 r2 f2 
= B 1 dt Y(t) + (Bn-

Bl   dt y(t) + B  |  dt(y -y) 

t2 t2 
- J dt 6 (t)yn(t) + j  dt f (t) . 

where the fact that   ' dt y(t) e DB is a consequence of 

1 
(7.34)   and  the  same   type of  closure  argument  as   followed 

that equation. 

If we now  let n -> « in  the   last equation  in   (7.37)   we 

fa 
see  that  the   term    Bn   I   '■'  dt   (yn-y)     n^   >  0     because 

t^ 

(7.38)      B    (y   -y)   =    [C  -C](B   f)   =    [C   -C] (Bf)    +    [C   -C] ( (B   -B) f) 11     ij u ii n n n 

and the  right-hand side  of   (7.38)   clearly -*-  0  in  the  sup norm 

as  n  -> co.     It  therefore   follows,   on  letting n  ->■ °°  in   (7.37), 

that   (7.32)   does  in   fact hold  for   functions  of  the  form   (7.33) 

and  thus   for all   f G A. 

Now if  6   and  f  are C     (hence y  is)   we  can  show  very easily 

-78- 

**. ^^-i 



immmmmm^~m*^mmm*m~~*' 

:■■:-.  • ■ 

that (7.32) implies (7.14). In fact  since y is C we can 

let h -+ 0 in the equation 
t+h 

(7.39) 
y(t+h)-y(t) 

t-t-n r 
B  f ds y(s)    | 

-y(t)     [ I 

t+h t+h 

ds 6(s)y(s)    f f(s) 

where h can be positive or negative, using the closure of B. 

Similarly (7.14) will hold if we only require Bf is AP. 

In fact since in that case By is AP, B can be brought inside 

the integral in (7.32), which can then be differentiated 

directly. 

We point out that in both these cases both y and By are 

also AP.  For future use we point out, using the integral 

2 
equation   (7.32)   applied  to   (7.27),   that  if  6   and  f are C 

2 
then  y  is  C     and    y  satisfies 

(7.40) y  =   [B-6]y  -   6y  +   f 

i.e. (7.14) can be differentiated formally. (Note in parti- 

2 
cular  that   if  Bf  is   AP,   B  y   is  AP.)      This   argument  can 

obviously  be  extended;   namely  if   f   and   6   are  C     then y  is  Cr 

and we have 

(7.41)     yr  =    [B-My17-1   +   tr~l  -   (öy)^1   +   oy^1   ,      r=l/...,p. 

We will now examine briefly the case that f e S. 

We still have y  -»• y but (7.30) need not hold since 6y and f 

need not belong to S. However we see very easily that if 

f e L and 
CO 
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(7.42) X  =  C(g) 

Xn  = Cn(^ 

then we will  have     xn(t)   ■>   x(t)   pointwise   and boundedly.   In 

fact  if wn(t)   =   x(t)   -   x   (t),   then 

(7.43) llwn(t)ll < K 1 e--rUzr-Zn
r)   g(t-r)ll dr 

0 
and the Lebesgue dominated convergence theorem is still 

applicable and hence (7.31) will still yield (7.27), if we 

use the bounded convergence theorem and the fact that 

(7.44) y(t)-yn(t) = [C-Cn](-6y+f)(t)+ Ci-Uy-y   ))(t)  > 0 

Thus y has   a bounded  derivative.     Now  if we  assume  that  f is 

of   the   form 

1       xiD   ' b e  DB   , 

then   the   derivation   of   (7.32)   from   (7.37)   and   (7.38)   still 

follows,   if we   use   the  bounded  convergence   theorem  for  inte- 

grals  over   finite   intervals.   Since   finite   sums   of  such   fs 

are  dense  in  S,    (7.32)   holds   for all   f 6  s  and  if Bf G s  or 

6   and   f  are  C1,   y will   still  be  the   unique  C^  solution  to 

(7.14).     Thus   the   theory  will hold   for  a  certain   class  of 

bounded,   non AP,   inhomogeneous  terms,   but  is  not  as  simple 

as   the  AP   case  and  in   the   future we will   restrict  ourselves 

to  this  case. 

Finally we   point  out   that   (7.32)   can  be  derived by 

brute  force  differentation  of  the  formula   (7.16)   but use  of 

the  approximating  operators  Bn  permits   a  cleaner   and more 

straightforward  development. 
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8- Discretization  in Space 

The operators  Bn which proved so useful in the 

preceding section need not correspond to a discretization 

in space.  We therefore postulate the existence of a 

family of bounded operators  Bh , where h will generally 

play the role of a spatial grid size, such that: 

(8.1) (a) 

(b) 

(c) 

(d) 

(e) 

Bh  are  defined  and bounded  for h e   (0,hn] 

"V   =  0^    '   m >   o 
n 

Bh     generate    bounded semi-groups   (i.e. 
B   t 

"e  n     E   z"l   £ M   for  t  >   0) 

e e Dn  implies   II (B-B. )eil     ^   n  >   0 a n h->-0 

If  6   is  not  a  scalar  function,   then  the 

commutivity  relations   (7.10)b,c    hold with 

B   and  Z     replaced by B,    and   Zh 
r n r 

(f) If  e  G   DB   (or  any  dense  manifold  in  D 

invariant  under  Z     for r .>   0)   we have 
B 

"Bhz
r

el1   1 K(I,e)   for  r G  I,  where  I   is  any 

compact  interval  on  the    nonnegative   real  axis. 

We point out that   (8.If)   is  designed  to  insure  that 

Zr  *  Zr  stron<3lyi   for  all  r  >   0.     This  is  certainly  reasonable 

since  B^e  converges   to BZre.     It is  of  course  trivial  if 

Bh  commutes with   Zr.     Also note  that  the  convergence  in   (8.Id) 

does  not deal with  the  order of  the  approximation  of BL   to B. 
h 
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This  will be dealt with by  a subsequent  assumption. 

Before proceeding  further,   we  indicate   a simple  example 

of   the   case we   are   considering. 

(8.2)      (a)        E  =  L2(0,27i) 

(b) B  :=  ä^     (with  periodic boundary  conditions) 

(c) B  =   u(x+h)-u(x-h) 
h 2h 

In this example (8.If) is unnecessary as Bh in fact commutes 

with Z . 
r 

Now  associated with  Bh  we  have   the  equations 

(8.3) y  =    [Bh-6]y 

(8-4) y  =    [Bh-6]y  +   f 

The homogeneous  equation   (8.4)   has  as  its   fundamental  solution 
Bht 

Vh(t)   =  g(t,s)   e        ,   and  is  exponentially  stable,   i.e.   there 

exist     constants     K  and  a     independent  of     h     such  that 

(8-5) ilYh(t)Y-1(s)ll    <  K  e"a(t-s)    , t   >   s. 

Associated with   (8.4)   we  form  the  operator C,   where 

t 

(8.6) yh  =  ch(f)   =     |  g(t,s)   zj_s   f(s)   ds 
— 00 

for any AP f, yh is the unique AP solution to (8.4). 

Equation (8.5) shows that the operators  C, are bounded 

uniformly in h, i.e. 

(8.7) ||y   ||       <   Kllflj 
h o» — 

where K  is  independent of h. 
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Now our first task is to show that C, + C strongly. 

Using the results of Section 7 (see (7.23) ff)  it is suffi- 

cient to show that  Zr -> Zr strongly, for r ^ 0.  This will 

be an easy consequence of (8.If).  In fact if e e D  (or 
B 

the  manifold  described  in   (8, If))   and if y =   z  e   , 

h h 
Y^ =  z

t
e   /   then  if    w    = y-y,   we will have 

(8.8) 
^  =  Bhwh  +   [B-Bh]y 

wh(0)      =     0   . 

From   (8.8)   we  can write 

t 

(8.9) wh(t)   =   f   ds   Z1?     [B-BJZ e 
I t-s n    s 

and  the   fact  that  " w   (t)ll   *  0,   in  fact uniformly  on  compact 

intervals,   is  an  immediate  consequence  of   (8. If)   and  the 

Lebesgue bounded convergence  theorem.     The  result  for  any 

e  G E     follows   from the   uniform boundedness  of   the 

operators     Zr    and  the  denseness  of  the manifold of   (8.If). 

Wow  the  fact that 

(8.10) II (y-yJ II 
h    «>    h->-0 

->   0 

for all  f S A  (in fact for all  f € S) is not any improvement 

of the corresponding result for the operators B  of Section 7. 

We want to show that the difference in (8.10) approaches zero 

as fast as some power of h, and to do this we must require 

that B^  approximate B up to a certain degree of accuracy. 

Specifically we suppose that there exists an operator L 
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(unbounded)   with    DL C  D     and  such  that  if e 6  D    we will 

have 

(8.11) l(B-Bh)ei    <   C hjllLell     where     j   >   0 

and C  and  j   are  independent  of h  and e. 

If we have  Lf(t)   AP we would  like  to show  that   (8.11) 

implies 

(8.12) (y-yjii   = o(hj) . 

Unfortunately   (8.12)   requires   a  further  assumption;   namely 

(a) 

(8.13) 
V   DL  "  DL 

(b)   If Lf is AP then IILZ f(t)ll  will be 

uniformly bounded for r ^ 0 and all t. 

Assumption(8.13) is of course trivial if L commutes with Z 

It is now a simple matter to show (8.12).  in fact 

w
h 

= y-yh is the unique AP solution to 

(8.14) wh = tßh-^wh + (B-BJy 

whence  by   (8.7)   we  have 

(8.15) II w, 0(11 [B-B. ]yll    ) n •*  oo 

and so it is only necessary to study (B-B )y.  But now if 

Bf S A, which will generally follow if Lf e A since L will 

be a higher order operator than B, we can write 
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(8.16) [B-Bh]y =   j   dr  g(t,t-r) [B-Bh]Zrf(t-r) 
0 

and  clearly 

(8.17) II [B-B^yll^  =  CXh3) 

is  an  immediate  consequence  of   (8.13) 
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9'   Discretization in Time bv  the Multistep Linear Method 

We will now  apply  the   theory  developed in     Section   3 

to  the  spatially discretized equation 

(9-1) yh   =    [Bh-6]   +   f   . 

Since Bh is bounded the theory is immediately applicable and 

we can assert that for k sufficiently small (but depending 

on h) there will be an AP sequence wn(k,h) which will converge 

to wn(k,h) defined by 

(9.2)       wn(k,h) = 
f yh( (n+£-l)k) 

1  yh(nk) 

and  if everything  is  smooth   in   t we will have 

(9.3) ||w -w  II     =  oL (kp) 
n    n t» h 

where  the  bound in   (9.3)   may  depend on  h.     It is  only   left 

to  show  that  the bound in   (9.3)   is   independent  of h  and to 

discuss  the  relationship of k to h.   We will    show  that what 

is   required is 

(9.4) k+    * 0(1) 

h 

i.e. there exists a constant  c  independent of k and h, 

such that if k + k/h " < c  the difference equation corres- 

ponding to (9.1) will be exponentially stable with constants 

independent of k and h. 
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The quadratic dependence on h in (9.4) is restrictive 

and will be removed in the following section. 

Throughout this section we will use the notation of 

Sections 2 and 3.  We will also take 6 to be C . 

We now fix h and consider the homogeneous difference 

equation on E, (see (3.7)), 

(9.5) w ., = U(kB - k6 ) + k 0(l)w„ . n+1      h   n n 

It  is   clear  that  this will  hold  uniformly  in k  and h  if 
m . 

k + k/h  is sufficiently small, i.e. if we are in a region 

(9.6) 
h 

Of course restrictions of the form (9.6) are included in (9.4) 

Also note from the explicit definition of the full linear 

term in (9.5) (see (2.11)) the last term in (9.5) will be 

uniform in k and h.  For the rest of this section this will 

be understood for all "0" signs unless stated otherwise. 

If W (k,h) is the fundamental solution to (9.5) it is n 

clear that all we must show is that in a region of the form 

(9.4) we will have 

-a k (n-j) 
(9.7) W W-1!! < Kn e  J 

n   j       -     1 
n > : 

where  the  constants K,   and  a,   are  independent of k  and h. 

Following  the procedure  of Section   3 we  let 

(9.8) v^  =  T(kB.    -  köh)wn n nun 
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and we then have in a region of the form (9,6) 

(9.9) vn+l  =  L(kBn  " kVVn  + k^^^n 

Using  the  structure of  the block  diagonal  operator    L(z) 

derived  in Theorem  1    we can write  this   as 

(9.10)     v n+1 

(   [I+k(B -6   )        0 
n    n 

l B n 

v    +  kO(k  +  -9-)v n , 2m    n 

Here we have used the notation Bn for the lower block (see 

(2.26)) so as not to confuse it with the operator B . 
h 

Observe   that  in   (9.10)   we have   the  first  appearance  of 

the   term    k/h  m.     This   is  because  in  order   to  apply Theorem 2 

we  must separate  out a  factor  of k  in  the  perturbing  term, 

rtow it certainly  follows   that  in  a  region of  the  type 

(9.6)   we have 

(9.11) 
n-1 

" FT B.n  < K1e n-: 
1=3 

n  >   J 

where  f^ and 0 are independent of h and k.  We therefore 

only have to consider the upper block in the leading term 

of (9.10) and in order to apply Theorem 2 we are going to 

compare this with  Yn;h = Yh(nk)  where  Yh is the fundamental 

solution to 

(9.12) YH  =   tB.-ölY, h        l"h 

Observe   that  the estimate 

-1 (9.13) Y       Y-1    II   <  K  -""Mn-j) Yn;hY  j;h"   - K e ' n i 3 
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holds,   where   K   and  a   are  independent  of  h. 

We will  show   that     Y     .    satisfies   the   difference n;h 

equation 

(9.14) Y   ..   ,   =    [I+kD   (k,h)]Y     , 
n+l;h n n;h 

■    [I+k(B. -6) jY^   .    +   kO(k   +   -~-)Y     ,     . h     n       n;h . 2in    n;h 

Observe  that   the   last  term  in   (9.14)   is   of   the   same  order 

as  the  perturbation  in   (9.10). 

Equation   (9.14)    follows  easily   from  the  same   argument 

as  in Section   3   (see   (3.13)   and   (3.14))   if we  simply  observe 

that 

(9.15) (B.    -6)   =   -  6 n 

and that   (3.15)   holds   in  this  case  for  t   >_ s  by   (8.5). 

We  can  now  apply  Theorem 2     comparing  the  equation 

n+l;h h     n       n;h 

with   (9.14).     We  simply note  that  the  proof of Theorem  2 

indicates   that   the   terms     r     ,   a.   and K,    (see  the  statement 

of Theorem  2)   depend only on  the  constants   K  and  a in   (9.13) 

and  are  thus   independent of both k  and h.   Another applica- 

tion  of  Theorem  2  comparing   the  equation 

(9-17) Vn+1 

f   I+k(Bh-6n)      0 

0 B n 

V n 

with   (9.10),   together with  the boundedness  of  the  operators 
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T(k(Bh-(Sn) ) , T~ (k(Bh-6n)) in the region described by (9.6) 

will yield (9.7) with the restriction k + k/h2m  sufficiently 

small (i.e. (9.4)). 

If we now refer to the proof of admissibility in the 

stable case given by (3.31) ff we see immediately that (9,7) 

implies  (L^,!^) admissibility for the inhomogeneous version 

(9.5), with an admissibility bound independent of k and h. 

It is only necessary to show that the convergence of w  to w 
^        n    n 

is independent of h (see (9.3)).  This will follow from (3.40) 

if wo can show i y^  II ^ will be bounded uniformly in h, 

assuming that 6 and f are smooth. 

In fact if 6 and f have p+1 derivatives the differenti- 

ability properties of y, are the same as those of y  introduced 

in Section 7.  In addition, the formula  given in (7.28) can 

obviously be extended (for the operators  C. ) to yield 
n 

(9.18)    yP+1 - Ch(f
P+1 ♦ (-6yh)P+1+ 6yP+1) 

(note that the argument of C, in (9.1?) does not involve yP  ) 

and the uniform boundedness of the opera'ors C. immediately 

yields the uniform boundednjss of the derivatives of y . 

If we now define w = n 

t  y((n+£-l)k 
, then (9.3) 

y(nk) 
(uniformly in h) together with (8.12) implies 

(9.19)     "Wn'Vco " Od^+h1") = 0(h2mp+hj) 

where we have used (9.4) for small k. 
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10.      The   Lax-Wendroff  Sehe me 

2n 
The   term    k/h       in   (9.4)   can  be   improved   for  operators 

such   that   the   Lax-Wendroff  scheme   is   stable   for   the  homogeneous 

equation 

(10.1) w =  Bw 

We will then be able to obtain AP sequence solutions under 

the more favorable restriction 

(10.2) k + ^ = Od) • 
h 

First of all we require that 6 and f are C3. As shown 

in Section 7 this implies that y is C . It implies further 

that y satisfies 

(10. 3) y = [B-'5]y - ^y + f 

i.e.   that   the  basic  equation 

(10.4) y  ■   [B-ö]y  +   f 

can  be  differentiated   formally. 

We   can  now   apply   the  Lax-Wendroff  scheme   to   (10.4). 

Proceeding   formally we write,   assuming Bf  is  AP, 

k2 

(10.5) y(t+k)   =  y(t)   +  ky(t)   +  |- y(t) 

k2 2 =  y(t)   +  k[B-6]y(t)   +  J-   [B-6]^y(t) 

k2        ' 
+ j- [-«y +(B-6)f +f] + kf(t) = 
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=    [I + kB + |- B'-]y(t) - k6y 

+ k[-±-  fi2- | 6 - k6B]y+ kit*  -2-(B-ö)f+ | f] 

We have written this as an inhomogeneous difference equation 

in order to apply techniques already developed. 

Now in the expression for y we approximate B by B 
h 

and in the expression for y approximate B2 by B2,. , for a 
ch 

certain constant  c > 0  to be determined (c = 1/2 for the 

example described in (8.2)).  Of course we will have to 

^     2 2 
assume that  B, approximates B  in the same sense that B 

h 
approximates  B,   but we will   leave   the  precise hypothesis 

for  later. 

Applying   these   approximations   to   (10.5)   and   letting w   (k,h) 

stand  for   the  dependent  variable we   obtain   the  difference 

equation 

(10.6) w        (k,h)   =  U(k,h)w  -  k6  w  +  kR(n/k,h)w  +  kf 
»•▼* n n  n n n 

where 

k2      2 (10.7) (a) U(k/h)   =   i   +  kB.    +  ^- B^ 
h       2       ch 

(b)        f  =   f     +  |   [B       -   6   ]f     ♦ 4 f n       n       2       ch nn       2n 

(c)        R(n,k,h)   =  I 62  -  I 6     -  k6  B       =  0 (k+ ^-) . 
2    n      2     n n ch . nr 

h 

Now  U(k,h)   represents  an  approximation  to   (10.1).  We 

choose  c  so  that   for 

k (10.8) 
m ■  0(1) 
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thil discretization is stable, i.e. 

(10.9) IU(k,h)r« i H , r > 0. 

We are going to use Theorem 2 to show that if llR(n,k,h)l' 

(i.e. k + k/hm) is sufficiently small, then the homogeneous 

version of (10.6) is exponentially stable; that is if 

N (k,h) is the fundamental solution to the homogeneous 
n 

equation, then there exists constants  K, and a, independent 

of k and h such that 

.       -o^Mn-j) 
(10.10) "W w^ « < K, e ,     n > j, n 3   - i - 

where   for  simplicity we have  suppressed  the  dependence  of W 

on  k  and h.     Once we  have  obtained   (10.10),      (1^,1^)    (and 

(Ä   ,Ä   ))   admissibility  will   follow   in   the  usual  manner, n     n 
To obtain   (10.10)   we  observe  that  since we  can  allow 

k   +  k/hm  to be  as   small   as   required.   Theorem  2   permits  us 

to neglect  the  perturbing  term R.     Also by  neglecting a 

perturbation  of   the   same  order  as  kR    we   can  work  with  the 

simpler  equation 

(10.11) W^j =   U-kon]   U(kh)wJi   . 

Now  consider  the   function     g(t,s)   defined  in   (7.11). 

Using  the  same   argument  given   in  Section   3   (see   (3.16)),   we 

see   that     g     =   g(nk,0)   will  satisfy   the  equation n 

(10.12) gn+1  =    [I+kDn]gn  =   [I-k6n+k20(1)]gn 

where  the   "0"  sign  in   (10.12)   is   independent of n.     Thus by 
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again neglecting a perturbation of the form kOU+k/h"1) 

we obtain finally the equation 

(10.13) 
*n+l = [1 + kDn] u^,h)wn 

But the fundamental solution to (10.13) is simply 

-1 
(10-14)      WnW.   = g(nk,jk)U(k/h)

n";) 

as  one  can   verify   immediately,   using   the  commutivity 

properties   of     gn  with     Bh      (see   (8.1e))   in   the   case  that 

6   is   an  operator.     Now   the  estimate 

_     "I -~k(n-j) 
(10.15) IIWnWj   II    <   K  e ; tl   >   j, 

follows   from   (7.10a)   and   (10.9)   and we  can  now  apply 

Theorem  2,   noting, again   that   the   terms     K.,   a   ,   F     depend 

only  on   the   terms   K   and  "   (see   the  hypothesis   of  Theorem  2), 

to  obtain   (10.10). 

We  now have   (I^»L*)    (or   (A^Ä^)    admissibility   for 

(10.6)   and  it   is   only  necessary   to  study   the  convergence   in 

the   case   that   the   inhomogeneous   term  is   given  by   (10.7b). 

To  do  this  we  must  now  assume   that  B^   approximates   B2;   namely 

that   there exists   an  operator L such   that  if e G  D    no 

then L B 

(10-16) I (B2-B2)ell   < C2hjllLell 

We   also  assume   that  L  satisfies   the  same   assumption   as   L 

(see   (8.13))   so   that   if  Lf  and  Lf  are  AP we  can  conclude 
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(using   the  same   argument  as   in   (8.16)   and   (8.17)) 

(10.17)       (a)        I (B-B. )yl      =   0(hh 

.2     2 
(b)        I (B   -Bj^yl^  =   Ofh3) 

If    w   (k,h)   is   the   unique  AP  solution   to   (10.6),   we  can  now 

show   that    w     converges   to  y     uniformly   in  n. 

In   fact since  y  is C   ,   yn  satisfies   (10.5)   up to  an error 

0(k   ).   If we  then  make  use of   (10.17)   we  see  that v    will Jn 

satisfy   (10.6)   with  an  error kO(h:,+k   ),   where  this  is  uniform 

in n.   Then  as  the  admissibility  bound of   (10.6)   is  independent 

of h   (by   (10.10)),   we  can  conclude 

(10.18) ^n"^"»  =  0(hj+k2)   =  0(hj+h2m) 

where we have  used   (10.2). 

For  the example  described  in   (8.2)   we will have 

(10.19) L = 
9x 

and  L = 
dx 4   ' 

(periodic boundary  conditions) 

Finally we  would   like  to point out that  in  the  term f 
n 

in (10.7b) one can replace B
cufn by Bf» without changing 

the order of the error. This is simply because Lf is AP, 

hence 

(10.20) n (B-B. )fH      =  0(h:i) 
h       o0 
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11 *  Linear Perturbations 

We now consider the perturbed system 

(U.l) y ■ [B-My + D(t)y ♦ f(t) 

Here D(t) is a bounded operator for each t and is almost 

periodic as an operator function.  We also require 

(11.2) IDI  <  €. 
00  —     0 

where   tQ  is   to be  specified. 

The   first  step  in   finding AP   solutions   to   (11.1)   is 

to  solve   the  equation 

(11. 3) y   =   C(Dy)    +  C(f)    . 

This equation can be solved uniquely by the contracting map- 

ping principle provided u = CQK < 1, where  K is the norm 

of C (see (7.18)).  The contracting mapping principle also 

shows that the assignment of y from f is a bounded operator 

and in fact 

(11.4) llyll      <  JL. || f||      =  KJI fll 

where K^ depends only on t» and is independent of D. 

We want to show that y satisfies (11.1), and if we 

assume that D, 6 and f are C , the results of Section 7 

show that it is sufficient to show that y is C . This will 

follow if we observe that y will be the limit of iterates 
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*i def. Lned 

(a) 

as 

(11 .5) 
(b) 

vo E 0 

y.+1  =   CMDy^   +   C(f)    . 

We will  then have   for each  i 

(11.6) yi+1 = 0(0^1   + C(-6yi  + Dyi  +  f) 

If we then define y as the unique solution to 

(11.7) y = C(Dy) + C(-6y + Dy + f) 

we will have 

(11.8) ^ ♦ y. 

To see   (11.8)   note   that  'y-11,,  is bounded  uniformly 

in  i   (from   (11.6)   and  u   <   1)   and  if  g,   is  defined  as 

(11.9) g-   =  sup tly-y  II 
r>i 

Then  {g.} form a nonincreasing sequence satisfying 

(11.10) g.+1 1 u g. + o(l) 

and (11.10) implies g. -> 0 which, in turn, implies (11.8). 

The fact that y = y  follows exactly as in Section 7 (see 

(7.27) ff) .  Observe that since y is AP, By is also AP 

(from (11.D) . 

Now consider the operators C, defined by (8.6). The 

equation 

(11.11) yh ■ Ch(Dyh) + Ch(f) 
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can be solved exactly as (11 3) can.  (For simplicity we 

suppose that 1(^1 - ICl sc th«t we have the same restric- 

ti on on f .. ) 

Our first task is to show that yh * y. This will be a 

simple consequence of the strong convergence of C to C. 
h 

In   fact   if wh  =  y   -  yh  We   have 

(11.12)      wh   =   [C-Ch](Dy)   +   Ch(Dwh)   +    [C-Cjjl (f) 

whence 

(11.13) "Vco  1  M"^!.  ♦   o(l) 
h->0 

h * —   h" ^ 

and   this   certainly   implies     HW. II 
h->0 

NOW  of  course   this  would  not be useful   unless  we   could 

prove 

(11.14) "V- = 0(h:i) 

This estimate can be shown provided we make certain 

assumptions on the interaction of D and the operator L 

defined in (8.11).  We first observe that wu satisfies h 
the   equation 

(11.15) Wh = V^h* + V^-Vy' 

and using the analogue of (11.4) for the equation (11.11), 

together with the uniform boundedness of the operators C 
h 

we  see 

(11.16) lwhlw   =   0(ll[B-Bh]yllJ    , 
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and it is sufficient to show 

(11.17) I[B-Bh]ylTO  =  Olh3)    . 

To obtain   (11.17)   we   make  an  assumption on  the  operator 

L.   We will  call  it Assumption  I   as we will   later have  to make 

the  same   type  of assumption   for other  operators. 

Assumption   I:     Suppose  there  exists   a  sequence   of 

operators     LQ  ■  I,   Lw..,,!.    =  L    such  that 

(11.18) (a) 

(b) 

(c) 

(d) 

L.   are  closea 

E   =   D.      3   DT       3   . . .   3   DT 
0 1 n 

L.   commutes  with   Z     for  t ^ 0   (i.e.   Z   ; 

and      L^ Z  e  =   Z  L.e   for e e DT   ) 
i 

If e e DT      then  D(t)e i  DT     and 

n 

DL^DL. 
1        l 

L D(t)e =     I    E   (t)L.e 
j=0 D 

where  the  operators  E.(t)   are bounded  and AP, 
I 

and E    =  D. 

Assumption I is clearly motivated by the example where 

D(t) is multiplication by some function d(t,x) (x is the 

spatial variable) . 

Now Assumption I implies that if L,£ is AP then L.y is \P 

for i  = l,...,n.  First note that if z = C(f) then 

(11.19) L^Z = C(L£f) . 

This is a consequence of (11.18a,c) using the same argument 

as was used for B (see (7.34) ff). Now if we define z„ .= L„v. 

where the y^^ are defined in (11.5); then it certainly follows 

-99- 

 Iin ■ -— ■ 



mmmmm ■w* i '    "  

from (11.18d) that  1^ .  is AP for i and for I ■ 0,...,n. 

We will now  show that the sequence (z  .} converges as i-> », 

To see this first set I ■ I.  We then have 

(11-20)  Zl;i-Hl = c<Dzi;i) 
+ C{Ej(t)y.) + C(f) 

and z1^i > z1 , where z  is the solution to 

(11.21)       z1 = CiDz^   +   C(Ejy) + C(f) . 

In fact wi i = zi " zx i satisfies the equation 

(11-21)     w1>i + 1 - CCDw^.) ♦ C(Ej(y-y.)) 

and 

(11.22) w, .11 
l,i t.-t. -I 

1  l,i 
-> 0 

follows from the same argument used in proving y is C 

(see (11.9) ff) .  Finally by the closure of L, we must 

have z^  =   L^y.      It is clear that a simple induction, using 

the same proof, will establish that 

(11.23) LnV- —i > L„v m    *^  X / • • • ^ n 

In particular L (= Ln)y  is AP and (11.17), hence (11.14) 

is valid. 

Finally we point out that if we assume a chain of 

operators, as in Assumption I, for the operator B, we will 

then have BDy  AP.   We will also have to make such an 

assumption for the operator L (see (10.16)), when applying 

the Lax-Wendroff scheme to (11.1), as will be discussed 

shortly. 
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We will now apply to (11.1) the two methods of time 

discretization  that have already been described.  We are 

interested in the existence of AP sequence solutions, or 

equivalently exponential stability for the homogeneous 

difference equation, with k and h restricted according to 

relations (9.4) and (10.2).  As one might expect  this will 

be a simple consequence of Theorem 2, provided cn is 

sufficiently small. 

We consider first the linear multistep scheme as 

discussed in Section 9.  Since the linear term C  of the 
n 

difference scheme (see (2.11)) is a smooth function of its 

£+1 arguments, it follows that if k + k/hm is sufficiently 

small (i.e. IkB.II is small) then the difference equation 

for (11.1) can be written 

(11.24) w ,  = C*w  + k 0(en)w + k f n+1   n n       On     n 

* 
where C  is the linear term corresponding to the unperturbed 

version of (11.1), i.e. 

(11.25) y = [Bh-Ö]y + f 

Since we have shown in Section 9 that in a region of the form 

(11.26) k + —- = 0(1) , zm h 

the unperturbed homogeneous difference equation 

(11.27) w .. = C* w 
n+1   n n 

is exponentially stable, with constants K, and ou independent 
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of k  and h   (see   (9.7)   ff)   it will  follow  from Theorem 2 

(see  the  remark   following   (9.16))   that in  the same  region 

the  homogeneous  version  of   (11.24)   will be exponentially 

stable  if e0  is  small  enough.     It then   follows  easily 

that  the  inhomogeneous  equation   (11.24)   will have   (Ln  Ln) 
00 '      oo I 

(or   (A  ,A ))   admissible,   with  an  admissibility bound 

independent of k  and h. 

We  can  thus  obtain AP  sequence  solutions  to   (11.24) 

and,   as  shown  in Section   9   (see   (9.18)   ff),   we will  obtain 

convergence  of 0(kp)   provided       ly**1!.     is  bounded  in h. 

However,   as  one  can  trivially see,   if D,   6,   and  f  are Cp+1 

then  the  same  argument  used  to show y  is C1   (see   (11.6)   ff) 

can be  repeated p+1  times   and applied to the  operators  C 
h 

as  well  as  C   to  show  that  y  and yh  are  CP+1   and  in   fact   (11.7) 

can be  generalized  to   (compare with   (9.18)) 

(11.28)     y1  =  C(Dy1)   +   C([(D-6)y]i   -    (D  -   6)yi   +   f1) 

i  =   1,...,p+l, 

with  a similar   formula  for yh  and C^.     This   certainly shows 

that     lly^ll     will be bounded  in h  for i =  l,...,p+l     and 

thus   that we  can obtain  a  complete extension  of  the  theory 

of  Section  9.     We note  in  passing,   that  the  same proof 

which  led to   (11.13)   will  show that    yjj ♦ y1. 

The extension of  the  Lax-Wendroff scheme will be  just 

as  simple.     In   fact   (under  the  assumption  that D,   6   and  f 
3 

are  C   )   the  difference equation  for   (11.1)   will have  the 
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same   linear  term  as   the  equation   for   (11.25),    (10.6) 

except   for  a perturbation 

(11.29)      k[D     +   i   ((B   .    -   6^)0^   +   D(B,    -   6)   +   D^   +   Dn)] n2 on nn ncn n n n 

as one can easily see by carrying out the expansion of 

Section 10 for the equation (11.1).  It follows that if 

k/h  = 0(1) (so that  kllB .1  is bounded), Theorem 2 is 
ch 

applicable, provided k and c0 are sufficiently small. One 

can then obtain AP sequence solutions and carry out the 

convergence argument of Section 10 (see (10.17) ff), 

with the only difficulty being the verification that 

(11.30) I (B -Bj)ylaB ■ 0(h:i) 

and this will follow immediately if one assumes a chain as 

in Assumption I for the operator L  introduced in (10.16). 
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Appendix.  Proof that (L^LJ Admissibility Implies 

an Exponential Dichotomy. 

Here we would like to give a simplified proof of the 

proposition that (A,A) admissibility for the inhomogeneous 

equation 

(A.l) y = Ay + f 

implies an exponential dichotomy for the homogeneous equation 

(A. 2) y = Ay 

It is assumed of course that A(t) is AP although we will 

actually do the L^ case. The proof is valid only if the 

underlying space E is finite dimensional and we can then 

regard A as a matrix and y and f as m vectors, where m is 

the dimension of E. The reader is referred to Section 5 

where an entirely similar proof for the difference equation 

case is given. 

The general proof is given in M & S (p. 344, Theorem 

103.A), but this proof relies strongly on preceding material. 

A finite dimensional proof is given in Goppel (p. 134 ff) 

for an equation on [0,»).  His proof can be extended to an 

equation on the whole real axis, but the proof given here 

is simpler and more in keeping with the ideas of Massera 

and Schäffer. 

It is shown in M&S (Theorem 103.A) that (A,A) admissi- 

bility implies (L ,L ) admissibility and this will be our 
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starting  point.     We   thus   assume   that   for every   f   in  L     ,    (A.l) 

has   a  unique  solution  y   in  L    and   the  estimate 

(A. 3) lyl  < Kll fl 

- 
will hold for a certain constant K. 

Now let S be the subspace of initial data which gives 

rise to solutions to (A.2) that are bounded for t: £   [0,°°). 

Let S-  be the analogous subspace giving rise to solutions 

that are bounded for  t 6 (-00,0].  We must have S, n s = {0} 

because any nontrivial, bounded solution to (A.2) would 

violate the uniqueness requirement of our definition of 

admissibility.  Let S^ be any subspace complementary to 

S, © S- so that 

(A.4) E ■ S. • S. • S. 

Let P,,P2,P-? be the associated projections, i.e. P, is the 

projection onto S, along S2 © S, , etc.  We have 

(A.5) I = P  + P2 + P 

PiPj = 0 '  i = 1'2'3;  J = 1'2'3'      i ^ 3- 

We will first show S3 ■ {0}, i.e. P3 = 0. This will 

follow from the variation of constants formula, just as in 

the difference equation case. If f has compact support and 

y(t) is the unique L solution to (A.l), then since y is a 

bounded solution to (A.2) for large |t|, we must have 
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(A.6)      (a) 
^^O P2Y"1(s)    f{s)   ds 

(b) Vo P3Y~1(s)   f(s)   ds 

(c) 'Vo -1 
J      Pj^Y   ±(s)    f(s)   ds 

(d) 
^^O P3Y'1(s)    f(s)   ds 

Here  Y(t)   is   the   fundamental   solution  to   (A.2). 

Now   for  any  vector     z e  E,   if we  set  f =   >        11Y(t)2 
I u z i J 

then (A.6b,d) yield imraediately P,z = 0 and we can conclude 

P3 = 0, i.e. 

(A. 7) 
E = 31 © S2 

1 = Pl + P2 

Using (A.6a,c) we also see that for any f with compact 

support we have 

(A. 8) 

where 

r> Ai Y(t)P Y~1(s) ,      t • s 
(A.9) G{t,s) = 1  _ 

-Y(t)P-Y i(s) ,      s > t 

y(t) =  ; G(t,s) f(s) ds 

We will next use (A.3) to show that for every fixed t, 

G(t,s) is in Lj^-«,»)  as a function of s, and in fact 
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(A.10) I ds   IG(t,s)l    <   K 

where K is given in (A.3). This is a simple consequence of 

using (A.8) as an operator on L^d), where I is any compact 

interval to conclude that 

(A.11) 
t 
ds lG(t,s)l < K 

and then letting I -► (-00,00) . 

Wa now will show that (A.10) implies 

(A.12) lG(t,s)l = 0(1) 

To see this we simply observe that Y  (s) satisfies the 

adjoint equation 

(A.13) Z  = - Z A(s) 

where we have used "'" to stand for d/ds.  Hence fixing t 

and considering the region s <_ t, we have 

(A.14) G(t,s)  = - G(t,s) A{s) 

Now since A is bounded it follows that G'(t,s) is in L, , as 

a function of s, on the interval (-•»t] with an L, norm 

which can be bounded uniformly in t.  This of course means 

that G(t/s) must approach a limit as s •+ -00 and since G{t,s) 

is in L  (as a function of s), this limit can only be zero. 

We thus have 

(A.15)      G( tfs) =  j dr G'(t,r) = 0 = 0(1) ,  s < t, 
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and a similar argument establishes (A.12) for s ^ t. 

We must now show that (A.12) can be replaced by an 

exponentially decaying factor, and to do this we consider 

perturbations of (A.l) and (A.2); namely for small c > 0 

consider the equations 

(A.16) 

(A.17) 

y = [A-Ll]y + f 

y = [A-eI]y 

If c is sufficiently small we will have (L^LJ admissible 

for (A.16).  This is a simple consequence of the contracting 

mapping principle analogous to the argument of Section 4C (see 

(4.9)ff). The contracting mapping principle will also show that 

the admissibility bound for (A.16) will be given by (see A.3) 

(A.18) Kc " 
K 

(1-eK) 
K , M < e0 , 

if     c0   is   sufficiently  small.     Thus   the   admissibility  bound 

for   (A.16)   can  be  taken  independent  of   c,   if  t   is   small 

enough. 

Now   the   fundamental  solution   to   (A.18)   is 

(A.19) Ye(t)   =  e"Ct  Y(t) 

and if P^, P^  denote the projections replacing P, and P  , 

while G (t,s) is the new Green's function, then the analysis 

which led to (A.12), and which depended only on admissibility, 

is equally valid here a- d we can conclude 
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(A.20) lGe(t,s)l = 0(1) ; lGe(t,-)l1 ■ 0(1) , 

where the bound in (A.20) can be taken independent of E 

(because of (A.18)). 

The estimate (A.20) means in particular that for small 

e there is a constant K- independent of e such that if s>^ t. 

(A.21) lY(t)P2Y"
1(s)l < K2 e"^

5"^ 

and it is only necessary to show that 

(A.22) 
P = P *! Fl 

Pe = P ^2 F2 

To prove   (A.22)   we  let S.   and S^  replace  S,   and S-. 

It  then  follows   from   (A.19)   and  £   >  0 

(A.23) 
Sl^Si 
S2  ^S2 

and (A.22) will be established if we can show that the ranks 

of the stable and unstable projections are unchanged for 

small e, and this, in turn, will follow from 

(A.24) IIP^ - P.I = 0(G) . 

To obtain (A.22) we set He(t,s) = Ge(t,s) - G(t,s). 

Now for any f with compact support we let y and y be the 

unique bounded solutions to (A.l) and (A.16) respectively, 

If w  = y - y we see that w  is the unique bounded 

solution to 

(A.25) w = Aw -e y  , 
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and we   can  conclude   from   (A.3)   together with   its   analogue 

for   (A.16)   that 

(A. 26) llw   II      =  0(( )ll fH 

Wow wc   can  also be written   as 

(^•27) w£(t)   = ds  Hfc (t,s)   d(s) 

and  using   the  same  argument   that   led   to   (A.10)   we  see   that 
00 

f r 
(A.28) ds   IIH   {t,s)il    =   0(e)    . 

(Note that the bound in (A.28) will be independent of t, 

although we will only use it for t = 0.) 

Now if s £ t we see that as a function of s, HC(t,s) 

satisfies the equation 

(A.29) He  = - HCA + e Ge(t,s) , 

This  equation,   together wich   (A.20)   and   (A.28),   shows   that 
OO 

(A.30) J   ds   llHC    (t,s)ll   =   0(e) 
— 00 

and since H (t,s) is in L, as a function of s we can write for 

s < t 

(A.31)      H£(t,s) =  | ds He,(t, s) - 0(e) 

and if we set t = 0, s = 0. , (A.31) yields (A.24), which 

proves one part of the requirement of an exponential dichotomy 

and the other part follows on replacing -e by +e. 
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